Song X, Xia B, Stowell SR, Lasanajak Y, Smith DF, Cummings RD. Novel fluorescent glycan microarray strategy reveals ligands for galectins. Chem Biol. 2009;16 (1) :36-47.Abstract
Galectin-1 (Gal-1) and galectin-3 (Gal-3) are widely expressed galectins with immunoregulatory functions in animals. To explore their glycan specificity, we developed microarrays of naturally occurring glycans using a bifunctional fluorescent linker, 2-amino-N-(2-aminoethyl)-benzamide (AEAB), directly conjugated through its arylamine group by reductive amination to free glycans to form glycan-AEABs (GAEABs). Glycans from natural sources were used to prepare over 200 GAEABs, which were purified by multidimensional high-pressure liquid chromatography and covalently immobilized onto N-hydroxysuccinimide-activated glass slides via their free alkylamine. Fluorescence-based screening demonstrated that Gal-1 recognizes a wide variety of complex N-glycans, whereas Gal-3 primarily recognizes poly-N-acetyllactosamine-containing glycans independent of N-glycan presentation. GAEABs provide a general solution to glycan microarray preparation from natural sources for defining the specificity of glycan-binding proteins.
Perrine C, Ju T, Cummings RD, Gerken TA. Systematic determination of the peptide acceptor preferences for the human UDP-Gal:glycoprotein-alpha-GalNAc beta 3 galactosyltransferase (T-synthase). Glycobiology. 2009;19 (3) :321-8.Abstract
Mucin-type protein O-glycosylation is initiated by the addition of alpha-GalNAc to Ser/Thr residues of a polypeptide chain. The addition of beta-Gal to GalNAc by the UDP-Gal:glycoprotein-alpha-GalNAc beta 3 galactosyltransferase (T-synthase), forming the Core 1 structure (beta-Gal(1-3)-alpha-GalNAc-O-Ser/Thr), is a common and biologically significant subsequent step in O-glycan biosynthesis. What dictates the sites of Core 1 glycosylation is poorly understood; however, the peptide sequence and neighboring glycosylation effects have been implicated. To systematically address the role of the peptide sequence on the specificity of T-synthase, we used the oriented random glycopeptide: GAGAXXXX(T-O-GalNAc)XXXXAGAG (where X = G, A, P, V, I, F, Y, S, N, D, E, H, R, and K) as a substrate. The Core 1 glycosylated product was isolated on immobilized PNA (Arachis hypogaea) lectin and its composition determined by Edman amino acid sequencing for comparison with the initial substrate composition, from which transferase preferences were obtained. From these studies, elevated preferences for Gly at the +1 position with moderately high preferences for Phe and Tyr in the +3 position relative to the acceptor Thr-O-GalNAc were found. A number of smaller Pro enhancements were also observed. Basic residues, i.e., Lys, Arg, and His, in any position were disfavored, suggesting electrostatic interactions as an additional important component modulating transferase specificity. This work suggests that there are indeed subtle specific and nonspecific protein-targeting sequence motifs for this transferase.
Bohnsack RN, Song X, Olson LJ, Kudo M, Gotschall RR, Canfield WM, Cummings RD, Smith DF, Dahms NM. Cation-independent mannose 6-phosphate receptor: a composite of distinct phosphomannosyl binding sites. J Biol Chem. 2009;284 (50) :35215-26.Abstract
The 300-kDa cation-independent mannose 6-phosphate receptor (CI-MPR), which contains multiple mannose 6-phosphate (Man-6-P) binding sites that map to domains 3, 5, and 9 within its 15-domain extracytoplasmic region, functions as an efficient carrier of Man-6-P-containing lysosomal enzymes. To determine the types of phosphorylated N-glycans recognized by each of the three carbohydrate binding sites of the CI-MPR, a phosphorylated glycan microarray was probed with truncated forms of the CI-MPR. Surface plasmon resonance analyses using lysosomal enzymes with defined N-glycans were performed to evaluate whether multiple domains are needed to form a stable, high affinity carbohydrate binding pocket. Like domain 3, adjacent domains increase the affinity of domain 5 for phosphomannosyl residues, with domain 5 exhibiting approximately 60-fold higher affinity for lysosomal enzymes containing the phosphodiester Man-P-GlcNAc when in the context of a construct encoding domains 5-9. In contrast, domain 9 does not require additional domains for high affinity binding. The three sites differ in their glycan specificity, with only domain 5 being capable of recognizing Man-P-GlcNAc. In addition, domain 9, unlike domains 1-3, interacts with Man(8)GlcNAc(2) and Man(9)GlcNAc(2) oligosaccharides containing a single phosphomonoester. Together, these data indicate that the assembly of three unique carbohydrate binding sites allows the CI-MPR to interact with the structurally diverse phosphorylated N-glycans it encounters on newly synthesized lysosomal enzymes.
Luyai A, Lasanajak Y, Smith DF, Cummings RD, Song X. Facile preparation of fluorescent neoglycoproteins using p-nitrophenyl anthranilate as a heterobifunctional linker. Bioconjug Chem. 2009;20 (8) :1618-24.Abstract
A facile preparation of neoglycoconjugates has been developed with a commercially available chemical, p-nitrophenyl anthranilate (PNPA), as a heterobifunctional linker. The two functional groups of PNPA, the aromatic amine and the p-nitrophenyl ester, are fully differentiated to selectively conjugate with glycans and other biomolecules containing nucleophiles. PNPA is efficiently conjugated with free reducing glycans via reductive amination. The glycan-PNPA conjugates (GPNPAs) can be easily purified and quantified by UV absorption. The active p-nitrophenyl ester in the GPNPA conjugates readily reacts with amines under mild conditions, and the resulting conjugates acquire strong fluorescence. This approach was used to prepare several fluorescent neoglycoproteins. The neoglycoproteins were covalently printed on activated glass slides and were bound by appropriate lectins recognizing the glycans.
Song X, Lasanajak Y, Xia B, Smith DF, Cummings RD. Fluorescent glycosylamides produced by microscale derivatization of free glycans for natural glycan microarrays. ACS Chem Biol. 2009;4 (9) :741-50.Abstract
A novel strategy for creating naturally derived glycan microarrays has been developed. Glycosylamines are prepared from free reducing glycans and stabilized by reaction with acryloyl chloride to generate a glycosylamide in which the reducing monosaccharide has a closed-ring structure. Ozonolysis of the protected glycan yields an active aldehyde, to which a bifunctional fluorescent linker is coupled by reductive amination. The fluorescent derivatives are easily coupled through a residual primary alkylamine to generate glycan microarrays. This strategy preserves structural features of glycans required for antibody recognition and allows development of natural arrays of fluorescent glycans in which the cyclic pyranose structure of the reducing-end sugar residue is retained.
Song X, Lasanajak Y, Rivera-Marrero C, Luyai A, Willard M, Smith DF, Cummings RD. Generation of a natural glycan microarray using 9-fluorenylmethyl chloroformate (FmocCl) as a cleavable fluorescent tag. Anal Biochem. 2009;395 (2) :151-60.Abstract
Glycan microarray technology has become a successful tool for studying protein-carbohydrate interactions, but a limitation has been the laborious synthesis of glycan structures by enzymatic and chemical methods. Here we describe a new method to generate quantifiable glycan libraries from natural sources by combining widely used protease digestion of glycoproteins and Fmoc chemistry. Glycoproteins including chicken ovalbumin, bovine fetuin, and horseradish peroxidase (HRP) were digested by Pronase, protected by FmocCl, and efficiently separated by 2D-HPLC. We show that glycans from HRP glycopeptides separated by HPLC and fluorescence monitoring retained their natural reducing end structures, mostly core alpha1,3-fucose and core alpha1,2-xylose. After simple Fmoc deprotection, the glycans were printed on NHS-activated glass slides. The glycans were interrogated using plant lectins and antibodies in sera from mice infected with Schistosoma mansoni, which revealed the presence of both IgM and IgG antibody responses to HRP glycopeptides. This simple approach to glycopeptide purification and conjugation allows for the development of natural glycopeptide microarrays without the need to remove and derivatize glycans and potentially compromise their reducing end determinants.
Song X, Lasanajak Y, Olson LJ, Boonen M, Dahms NM, Kornfeld S, Cummings RD, Smith DF. Glycan microarray analysis of P-type lectins reveals distinct phosphomannose glycan recognition. J Biol Chem. 2009;284 (50) :35201-14.Abstract
The specificity of the cation-independent and -dependent mannose 6-phosphate receptors (CI-MPR and CD-MPR) for high mannose-type N-glycans of defined structure containing zero, one, or two Man-P-GlcNAc phosphodiester or Man-6-P phosphomonoester residues was determined by analysis on a phosphorylated glycan microarray. Amine-activated glycans were covalently printed on N-hydroxysuccinimide-activated glass slides and interrogated with different concentrations of recombinant CD-MPR or soluble CI-MPR. Neither receptor bound to non-phosphorylated glycans. The CD-MPR bound weakly or undetectably to the phosphodiester derivatives, but strongly to the phosphomonoester-containing glycans with the exception of a single Man7GlcNAc2-R isomer that contained a single Man-6-P residue. By contrast, the CI-MPR bound with high affinity to glycans containing either phospho-mono- or -diesters although, like the CD-MPR, it differentially recognized isomers of phosphorylated Man7GlcNAc2-R. This differential recognition of phosphorylated glycans by the CI- and CD-MPRs has implications for understanding the biosynthesis and targeting of lysosomal hydrolases.
Xia B, Feasley CL, Sachdev GP, Smith DF, Cummings RD. Glycan reductive isotope labeling for quantitative glycomics. Anal Biochem. 2009;387 (2) :162-70.Abstract
Many diseases and disorders are characterized by quantitative and/or qualitative changes in complex carbohydrates. Mass spectrometry methods show promise in monitoring and detecting these important biological changes. Here we report a new glycomics method, termed glycan reductive isotope labeling (GRIL), where free glycans are derivatized by reductive amination with the differentially coded stable isotope tags [(12)C(6)]aniline and [(13)C(6)]aniline. These dual-labeled aniline-tagged glycans can be recovered by reverse-phase chromatography and can be quantified based on ultraviolet (UV) absorbance and relative ion abundances. Unlike previously reported isotopically coded reagents for glycans, GRIL does not contain deuterium, which can be chromatographically resolved. Our method shows no chromatographic resolution of differentially labeled glycans. Mixtures of differentially tagged glycans can be directly compared and quantified using mass spectrometric techniques. We demonstrate the use of GRIL to determine relative differences in glycan amount and composition. We analyze free glycans and glycans enzymatically or chemically released from a variety of standard glycoproteins, as well as human and mouse serum glycoproteins, using this method. This technique allows linear relative quantitation of glycans over a 10-fold concentration range and can accurately quantify sub-picomole levels of released glycans, providing a needed advancement in the field of glycomics.
Cummings RD. The repertoire of glycan determinants in the human glycome. Mol Biosyst. 2009;5 (10) :1087-104.Abstract
The number of glycan determinants that comprise the human glycome is not known. This uncertainty arises from limited knowledge of the total number of distinct glycans and glycan structures in the human glycome, as well as limited information about the glycan determinants recognized by glycan-binding proteins (GBPs), which include lectins, receptors, toxins, microbial adhesins, antibodies, and enzymes. Available evidence indicates that GBP binding sites may accommodate glycan determinants made up of 2 to 6 linear monosaccharides, together with their potential side chains containing other sugars and modifications, such as sulfation, phosphorylation, and acetylation. Glycosaminoglycans, including heparin and heparan sulfate, comprise repeating disaccharide motifs, where a linear sequence of 5 to 6 monosaccharides may be required for recognition. Based on our current knowledge of the composition of the glycome and the size of GBP binding sites, glycoproteins and glycolipids may contain approximately 3000 glycan determinants with an additional approximately 4000 theoretical pentasaccharide sequences in glycosaminoglycans. These numbers provide an achievable target for new chemical and/or enzymatic syntheses, and raise new challenges for defining the total glycome and the determinants recognized by GBPs.
Varki A, Cummings RD, Esko JD, Freeze HH, Stanley P, Marth JD, Bertozzi CR, Hart GW, Etzler ME. Symbol nomenclature for glycan representation. Proteomics. 2009;9 (24) :5398-9.Abstract
The glycan symbol nomenclature proposed by Harvey et al. in these pages has relative advantages and disadvantages. The use of symbols to depict glycans originated from Kornfeld in 1978, was systematized in the First Edition of "Essentials of Glycobiology" and updated for the second edition, with input from relevant organizations such as the Consortium for Functional Glycomics. We also note that >200 illustrations in the second edition have already been published using our nomenclature and are available for download at PubMed.
Stowell SR, Arthur CM, Mehta P, Slanina KA, Blixt O, Leffler H, Smith DF, Cummings RD. Galectin-1, -2, and -3 exhibit differential recognition of sialylated glycans and blood group antigens. J Biol Chem. 2008;283 (15) :10109-23.Abstract
Human galectins have functionally divergent roles, although most of the members of the galectin family bind weakly to the simple disaccharide lactose (Galbeta1-4Glc). To assess the specificity of galectin-glycan interactions in more detail, we explored the binding of several important galectins (Gal-1, Gal-2, and Gal-3) using a dose-response approach toward a glycan microarray containing hundreds of structurally diverse glycans, and we compared these results to binding determinants on cells. All three galectins exhibited differences in glycan binding characteristics. On both the microarray and on cells, Gal-2 and Gal-3 exhibited higher binding than Gal-1 to fucose-containing A and B blood group antigens. Gal-2 exhibited significantly reduced binding to all sialylated glycans, whereas Gal-1 bound alpha2-3- but not alpha2-6-sialylated glycans, and Gal-3 bound to some glycans terminating in either alpha2-3- or alpha2-6-sialic acid. The effects of sialylation on Gal-1, Gal-2, and Gal-3 binding to cells also reflected differences in cellular sensitivity to Gal-1-, Gal-2-, and Gal-3-induced phosphatidylserine exposure. Each galectin exhibited higher binding for glycans with poly-N-acetyllactosamine (poly(LacNAc)) sequences (Galbeta1-4GlcNAc)(n) when compared with N-acetyllactosamine (LacNAc) glycans (Galbeta1-4GlcNAc). However, only Gal-3 bound internal LacNAc within poly(LacNAc). These results demonstrate that each of these galectins mechanistically differ in their binding to glycans on the microarrays and that these differences are reflected in the determinants required for cell binding and signaling. The specific glycan recognition by each galectin underscores the basis for differences in their biological activities.
Zheng Q, van Die I, Cummings RD. A novel alpha1,2-fucosyltransferase (CE2FT-2) in Caenorhabditis elegans generates H-type 3 glycan structures. Glycobiology. 2008;18 (4) :290-302.Abstract
The alpha1,2-fucosyltransferase family (alpha1,2FT) is the largest family of glycosyltransferases in the genome of the free-living nematode Caenorhabditis elegans, and early evidence suggests that each member may have a unique activity. Here we describe a C. elegans gene (designated CE2FT-2) encoding an alpha1,2FT that has the potential to generate the sequence Fucalpha1-2Galbeta1-3GalNAcalpha-R, which is the H-type 3 blood group structure. The CE2FT-2 cDNA encodes a putative transmembrane protein that shows approximately 42% amino acid identity to a previously cloned C. elegans alpha1,2FT (termed CE2FT-1), but has a very low identity ( approximately 16-20%) to alpha1,2FT sequences in humans, rabbits, and mice. A recombinant form of CE2FT-2 expressed in human 293T cells has a high alpha1,2FT activity toward Galbeta1-3GalNAcalpha-O-pNP, but unexpectedly, the enzyme is inactive toward the acceptor Galbeta-O-phenyl. Thus, CE2FT-2 differs from all other alpha1,2FTs previously described from animals that all utilize Galbeta-O-phenyl. CE2FT-2 is expressed at all stages of worm development, but remarkably, promoter analysis of the CE2FT-2 gene using green fluorescent protein reporter constructs indicates that the CE2FT-2 is expressed exclusively in pharyngeal cells of the worm from embryo to an adult stage. Because pharyngeal cells are known to secrete their glycoconjugates to the nematode surface, these results may indicate that products of CE2FT-2 contribute to interactions of the nematode with its environment or are used as ligands for bacterial attachment. These findings, along with those on other alpha1,2FTs in C. elegans, suggest that each alpha1,2FT in this organism may have a unique acceptor specificity, expression pattern, and biological function.
Song X, Xia B, Lasanajak Y, Smith DF, Cummings RD. Quantifiable fluorescent glycan microarrays. Glycoconj J. 2008;25 (1) :15-25.Abstract
A glycan microarray was developed by using 2,6-diaminopyridine (DAP) as a fluorescent linker and printing of the glycan-DAP conjugates (GDAPs) on epoxy-activated glass slides. Importantly, all coupled GDAPs showed a detectable level of concentration-dependent GDAP fluorescence under blue laser excitation (495 nm) that can be used for both grid location and on-slide quantification. A glycan array including a large number of GDAP's derived from natural and commercially available free glycans was constructed and glycan interactions with various plant lectins were investigated. In addition, binding parameters of lectins to glycans were obtained by varying both the amount of GDAPs on the array and the lectin concentration in analyses. These data demonstrate the general utility of GDAP microarrays for functional glycomic analyses and for determining binding parameters of glycan binding proteins (GBPs).
Klopocki AG, Yago T, Mehta P, Yang J, Wu T, Leppänen A, Bovin NV, Cummings RD, Zhu C, McEver RP. Replacing a lectin domain residue in L-selectin enhances binding to P-selectin glycoprotein ligand-1 but not to 6-sulfo-sialyl Lewis x. J Biol Chem. 2008;283 (17) :11493-500.Abstract
Selectin-ligand interactions (bonds) mediate leukocyte rolling on vascular surfaces. The molecular basis for differential ligand recognition by selectins is poorly understood. Here, we show that substituting one residue (A108H) in the lectin domain of L-selectin increased its force-free affinity for a glycosulfopeptide binding site (2-GSP-6) on P-selectin glycoprotein ligand-1 (PSGL-1) but not for a sulfated-glycan binding site (6-sulfo-sialyl Lewis x) on peripheral node addressin. The increased affinity of L-selectinA108H for 2-GSP-6 was due to a faster on-rate and to a slower off-rate that increased bond lifetimes in the absence of force. Rather than first prolonging (catching) and then shortening (slipping) bond lifetimes, increasing force monotonically shortened lifetimes of L-selectinA108H bonds with 2-GSP-6. When compared with microspheres bearing L-selectin, L-selectinA108H microspheres rolled more slowly and regularly on 2-GSP-6 at low flow rates. A reciprocal substitution in P-selectin (H108A) caused faster microsphere rolling on 2-GSP-6. These results distinguish molecular mechanisms for L-selectin to bind to PSGL-1 and peripheral node addressin and explain in part the shorter lifetimes of PSGL-1 bonds with L-selectin than P-selectin.
Farrand S, Hotze E, Friese P, Hollingshead SK, Smith DF, Cummings RD, Dale GL, Tweten RK. Characterization of a streptococcal cholesterol-dependent cytolysin with a lewis y and b specific lectin domain. Biochemistry. 2008;47 (27) :7097-107.Abstract
The cholesterol-dependent cytolysins (CDCs) are a large family of pore-forming toxins that often exhibit distinct structural changes that modify their pore-forming activity. A soluble platelet aggregation factor from Streptococcus mitis (Sm-hPAF) was characterized and shown to be a functional CDC with an amino-terminal fucose-binding lectin domain. Sm-hPAF, or lectinolysin (LLY) as renamed herein, is most closely related to CDCs from Streptococcus intermedius (ILY) and Streptococcus pneumoniae (pneumolysin or PLY). The LLY gene was identified in strains of S. mitis, S. pneumoniae, and Streptococcus pseudopneumoniae. LLY induces pore-dependent changes in the light scattering properties of the platelets that mimic those induced by platelet aggregation but does not induce platelet aggregation. LLY monomers form the typical large homooligomeric membrane pore complex observed for the CDCs. The pore-forming activity of LLY on platelets is modulated by the amino-terminal lectin domain, a structure that is not present in other CDCs. Glycan microarray analysis showed the lectin domain is specific for difucosylated glycans within Lewis b (Le (b)) and Lewis y (Le (y)) antigens. The glycan-binding site is occluded in the soluble monomer of LLY but is apparently exposed after cell binding, since it significantly increases LLY pore-forming activity in a glycan-dependent manner. Hence, LLY represents a new class of CDC whose pore-forming mechanism is modulated by a glycan-binding domain.
Stowell SR, Qian Y, Karmakar S, Koyama NS, Dias-Baruffi M, Leffler H, McEver RP, Cummings RD. Differential roles of galectin-1 and galectin-3 in regulating leukocyte viability and cytokine secretion. J Immunol. 2008;180 (5) :3091-102.Abstract
Galectin-1 (Gal-1) and galectin-3 (Gal-3) exhibit profound but unique immunomodulatory activities in animals but their molecular mechanisms are incompletely understood. Early studies suggested that Gal-1 inhibits leukocyte function by inducing apoptotic cell death and removal, but recent studies show that some galectins induce exposure of the common death signal phosphatidylserine (PS) independently of apoptosis. In this study, we report that Gal-3, but not Gal-1, induces both PS exposure and apoptosis in primary activated human T cells, whereas both Gal-1 and Gal-3 induce PS exposure in neutrophils in the absence of cell death. Gal-1 and Gal-3 bind differently to the surfaces of T cells and only Gal-3 mobilizes intracellular Ca2+ in these cells, although Gal-1 and Gal-3 bind their respective T cell ligands with similar affinities. Although Gal-1 does not alter T cell viability, it induces IL-10 production and attenuates IFN-gamma production in activated T cells, suggesting a mechanism for Gal-1-mediated immunosuppression in vivo. These studies demonstrate that Gal-1 and Gal-3 induce differential responses in T cells and neutrophils, and identify the first factor, Gal-3, capable of inducing PS exposure with or without accompanying apoptosis in different leukocytes, thus providing a possible mechanism for galectin-mediated immunomodulation in vivo.
Stowell SR, Arthur CM, Slanina KA, Horton JR, Smith DF, Cummings RD. Dimeric Galectin-8 induces phosphatidylserine exposure in leukocytes through polylactosamine recognition by the C-terminal domain. J Biol Chem. 2008;283 (29) :20547-59.Abstract
Human galectins have distinct and overlapping biological roles in immunological homeostasis. However, the underlying differences among galectins in glycan binding specificity regulating these functions are unclear. Galectin-8 (Gal-8), a tandem repeat galectin, has two distinct carbohydrate recognition domains (CRDs) that may cross-link cell surface counter receptors. Here we report that each Gal-8 CRD has differential glycan binding specificity and that cell signaling activity resides in the C-terminal CRD. Full-length Gal-8 and recombinant individual domains (Gal-8N and Gal-8C) bound to human HL60 cells, but only full-length Gal-8 signaled phosphatidylserine (PS) exposure in cells, which occurred independently of apoptosis. Although desialylation of cells did not alter Gal-8 binding, it enhanced cellular sensitivity to Gal-8-induced PS exposure. By contrast, HL60 cell desialylation increased binding by Gal-8C but reduced Gal-8N binding. Enzymatic reduction in surface poly-N-acetyllactosamine (polyLacNAc) glycans in HL60 cells reduced cell surface binding by Gal-8C but did not alter Gal-8N binding. Cross-linking and light scattering studies showed that Gal-8 is dimeric, and studies on individual subunits indicate that dimerization occurs through the Gal-8N domain. Mutations of individual domains within full-length Gal-8 showed that signaling activity toward HL60 cells resides in the C-terminal domain. In glycan microarray analyses, each CRD of Gal-8 showed different binding, with Gal-8N recognizing sulfated and sialylated glycans and Gal-8C recognizing blood group antigens and polyLacNAc glycans. These results demonstrate that Gal-8 dimerization promotes functional bivalency of each CRD, which allows Gal-8 to signal PS exposure in leukocytes entirely through C-terminal domain recognition of polyLacNAc glycans.
Karmakar S, Stowell SR, Cummings RD, McEver RP. Galectin-1 signaling in leukocytes requires expression of complex-type N-glycans. Glycobiology. 2008;18 (10) :770-8.Abstract
Dimeric galectin-1 (dGal-1) is a homodimeric lectin with multiple proposed functions. Although dGal-1 binds to diverse glycans, it is unclear whether dGal-1 preferentially binds to specific subsets of glycans on cell surfaces to transmit signals. To explore this question, we selectively inhibited major glycan biosynthetic pathways in human HL60, Molt-4, and Jurkat cells. Inhibition of N-glycan processing blocked surface binding of dGal-1 and prevented dGal-1-induced Ca(2+) mobilization and phosphatidylserine exposure. By contrast, inhibition of O-glycan or glycosphingolipid biosynthesis did not affect dGal-1 binding or dGal-1-induced Ca(2+) mobilization and phosphatidylserine exposure. These results demonstrate that dGal-1 preferentially binds to and signals through glycoproteins containing complex-type N-glycans in at least some leukocyte subsets.
Zupancic ML, Frieman M, Smith D, Alvarez RA, Cummings RD, Cormack BP. Glycan microarray analysis of Candida glabrata adhesin ligand specificity. Mol Microbiol. 2008;68 (3) :547-59.Abstract
The Candida glabrata genome encodes at least 23 members of the EPA (epithelial adhesin) family responsible for mediating adherence to host cells. To better understand the mechanism by which the Epa proteins contribute to pathogenesis, we have used glycan microarray analysis to characterize their carbohydrate-binding specificities. Using Saccharomyces cerevisiae strains surface-expressing the N-terminal ligand-binding domain of the Epa proteins, we found that the three Epa family members functionally identified as adhesins in Candida glabrata (Epa1, Epa6 and Epa7) bind to ligands containing a terminal galactose residue. However, the specificity of the three proteins for glycans within this class varies, with Epa6 having a broader specificity range than Epa1 or Epa7. This result is intriguing given the close homology between Epa6 and Epa7, which are 92% identical at the amino acid level. We have mapped a five-amino-acid region within the N-terminal ligand-binding domain that accounts for the difference in specificity of Epa6 and Epa7 and show that these residues contribute to adherence to both epithelial and endothelial cell lines in vitro.
Ju T, Lanneau GS, Gautam T, Wang Y, Xia B, Stowell SR, Willard MT, Wang W, Xia JY, Zuna RE, et al. Human tumor antigens Tn and sialyl Tn arise from mutations in Cosmc. Cancer Res. 2008;68 (6) :1636-46.Abstract
Neoplastic lesions typically express specific carbohydrate antigens on glycolipids, mucins, and other glycoproteins. Such antigens are often under epigenetic control and are subject to reversion and loss upon therapeutic selective pressure. We report here that two of the most common tumor-associated carbohydrate antigens, Tn and sialyl Tn (STn), result from somatic mutations in the gene Cosmc that encodes a molecular chaperone required for formation of the active T-synthase. Diverse neoplastic lesions, including colon cancer and melanoma-derived cells lines, expressed both Tn and STn antigen due to loss-of-function mutations in Cosmc. In addition, two human cervical cancer specimens that showed expression of the Tn/STn antigens were also found to have mutations in Cosmc and loss of heterozygosity for the cross-linked Cosmc locus. This is the first example of somatic mutations in multiple types of cancers that cause global alterations in cell surface carbohydrate antigen expression.