Publications

2010
Krishnamurthy VR, Wilson JT, Cui W, Song X, Lasanajak Y, Cummings RD, Chaikof EL. Chemoselective immobilization of peptides on abiotic and cell surfaces at controlled densities. Langmuir. 2010;26 (11) :7675-8.Abstract
We report herein a new and enabling approach for decorating both abiotic and cell surfaces with the extracellular matrix IKVAV peptide in a site-specific manner using strain promoted azide-alkyne cycloaddition. A cyclooctyne-derivatized IKVAV peptide was synthesized and immobilized on the surface of pancreatic islets through strain-promoted azide-alkyne cycloaddition with cell surface azides generated by the electrostatic adsorption of a cytocompatible poly(L-lysine)-graft-poly(ethylene glycol) (PLL-g-PEG) copolymer bearing azido groups (PP-N(3)). Both "one-pot" and sequential addition of PP-N(3) and a cyclooctyne-derivatized IKVAV peptide conjugate enabled efficient modification of the pancreatic islet surface in less than 60 min. The ability to bind peptides at controlled surface densities was demonstrated in a quantitative manner using microarrays. Additionally, the technique is remarkably rapid and highly efficient, opening new avenues for the molecular engineering of cellular interfaces and protein and peptide microarrays.
Wang Y, Ju T, Ding X, Xia B, Wang W, Xia L, He M, Cummings RD. Cosmc is an essential chaperone for correct protein O-glycosylation. Proc Natl Acad Sci U S A. 2010;107 (20) :9228-33.Abstract
Cosmc is a molecular chaperone thought to be required for expression of active T-synthase, the only enzyme that galactosylates the Tn antigen (GalNAcalpha1-Ser/Thr-R) to form core 1 Galbeta1-3GalNAcalpha1-Ser/Thr (T antigen) during mucin type O-glycan biosynthesis. Here we show that ablation of the X-linked Cosmc gene in mice causes embryonic lethality and Tn antigen expression. Loss of Cosmc is associated with loss of T-synthase but not other enzymes required for glycoprotein biosynthesis, demonstrating that Cosmc is specific in vivo for the T-synthase. We generated genetically mosaic mice with a targeted Cosmc deletion and survivors exhibited abnormalities correlated with Tn antigen expression that are related to several human diseases.
Dias-Baruffi M, Stowell SR, Song S-C, Arthur CM, Cho M, Rodrigues LC, Montes MAB, Rossi MA, James JA, McEver RP, et al. Differential expression of immunomodulatory galectin-1 in peripheral leukocytes and adult tissues and its cytosolic organization in striated muscle. Glycobiology. 2010;20 (5) :507-20.Abstract
Galectin-1 (Gal-1) is important in immune function and muscle regeneration, but its expression and localization in adult tissues and primary leukocytes remain unclear. To address this, we generated a specific monoclonal antibody against Gal-1, termed alphahGal-1, and defined a sequential peptide epitope that it recognizes, which is preserved in human and porcine Gal-1, but not in murine Gal-1. Using alphahGal-1, we found that Gal-1 is expressed in a wide range of porcine tissues, including striated muscle, liver, lung, brain, kidney, spleen, and intestine. In most types of cells, Gal-1 exhibits diffuse cytosolic expression, but in cells within the splenic red pulp, Gal-1 showed both cytosolic and nuclear localization. Gal-1 was also expressed in arterial walls and exhibited prominent cytosolic and nuclear staining in cultured human endothelial cells. However, human peripheral leukocytes and promyelocytic HL60 cells lack detectable Gal-1 and also showed very low levels of Gal-1 mRNA. In striking contrast, Gal-1 exhibited an organized cytosolic staining pattern within striated muscle tissue of cardiac and skeletal muscle and colocalized with sarcomeric actin on I bands. These results provide insights into previously defined roles for Gal-1 in inflammation, immune regulation and muscle biology.
Aryal RP, Ju T, Cummings RD. The endoplasmic reticulum chaperone Cosmc directly promotes in vitro folding of T-synthase. J Biol Chem. 2010;285 (4) :2456-62.Abstract
The T-synthase is the key beta 3-galactosyltransferase essential for biosynthesis of core 1 O-glycans (Gal beta 1-3GalNAc alpha 1-Ser/Thr) in animal cell glycoproteins. Here we describe the novel ability of an endoplasmic reticulum-localized molecular chaperone termed Cosmc to specifically interact with partly denatured T-synthase in vitro to cause partial restoration of activity. By contrast, a mutated form of Cosmc observed in patients with Tn syndrome has reduced chaperone function. The chaperone activity of Cosmc is specific, does not require ATP in vitro, and is effective toward T-synthase but not another beta-galactosyltransferase. Cosmc represents the first ER chaperone identified to be required for folding of a glycosyltransferase.
Dong H, Song X, Lasanajak Y, Cummings RD, Chaikof EL. Facile construction of fluorescent peptide microarrays: One-step fluorescent derivatization of sub-microscale peptide aldehydes for selective terminal immobilization. Anal Biochem. 2010;398 (1) :132-4.Abstract
In this note, we demonstrate the utility of bifunctional fluorescent linkers to facilitate the construction of peptide microarrays with either an N- or a C-terminal alkylamine for directionally preferred peptide immobilization. Significantly, these small tags facilitate high-performance liquid chromatography (HPLC) profiling while limiting interference with antigen-antibody interactions after peptide immobilization. In a model peptide-antibody binding assay, a sequence-dependent orientation effect of antibody binding to a series of peptide ligands was demonstrated. This approach provides a strategy that can be applied to a variety of peptide microarray-based detection systems.
Ju T, Cummings RD. Functional assays for the molecular chaperone cosmc. Methods Enzymol. 2010;479 :107-22.Abstract
Mucin type O-glycosylation involves sequential actions of several glycosyltransferases in the Golgi apparatus. Among those enzymes, a single gene product termed core 1 beta3-galactosyltransferase (T-synthase) in vertebrates is the key enzyme that converts the precursor Tn antigen GalNAcalpha1-Ser/Thr to the core 1 structure, Galbeta1-3GalNAcalpha1-Ser/Thr, also known as T antigen. This represents the most common structure within typical O-glycans of membrane and secreted glycoproteins. Formation of the active T-synthase requires that it interacts with Core 1 beta3Gal-T Specific Molecular Chaperone (Cosmc), which is a specific molecular chaperone in the endoplasmic reticulum (ER). T-synthase activity is commonly measured by its ability to transfer [3H]Gal from UDP-[3H]Gal to an artificial acceptor GalNAcalpha-1-O-phenyl to form [3H]Galbeta1-3GalNAcalpha-1-O-phenyl, which can then be isolated and quantified. Because the primary function of Cosmc is to form active T-synthase, the activity of Cosmc is assessed indirectly by its ability to promote formation of active T-synthase when it is coexpressed with T-synthase in cells lacking functional Cosmc. Such cells include insect cells, which constitutively lack Cosmc, and Cosmc-deficient mammalian cell lines. Cosmc is encoded by the X-linked Cosmc gene (Xq24 in human, Xc3 in mice), thus, acquired mutations in Cosmc, which have been observed in several human diseases, such as Tn syndrome and cancers, cause a loss of T-synthase, and expression of the Tn antigen. The methods described here allow the functional activities of such mutated Cosmc (mCosmc) to be measured and compared to wild-type (wtCosmc).
Leppänen A, Parviainen V, Ahola-Iivarinen E, Kalkkinen N, Cummings RD. Human L-selectin preferentially binds synthetic glycosulfopeptides modeled after endoglycan and containing tyrosine sulfate residues and sialyl Lewis x in core 2 O-glycans. Glycobiology. 2010;20 (9) :1170-85.Abstract
Endoglycan is a mucin-like glycoprotein expressed by endothelial cells and some leukocytes and is recognized by L-selectin, a C-type lectin important in leukocyte trafficking and extravasation during inflammation. Here, we show that recombinant L-selectin and human T lymphocytes expressing L-selectin bind to synthetic glycosulfopeptides (GSPs). These synthetic glycosulfopeptides contain 37 amino acid residues modeled after the N-terminus of human endoglycan and contain one or two tyrosine sulfates (TyrSO(3)) along with a nearby core-2-based Thr-linked O-glycan with sialyl Lewis x (C2-SLe(x)). TyrSO(3) at position Y118 was more critical for binding than at Y97. C2-SLe(x) at T124 was required for L-selectin recognition. Interestingly, under similar conditions, neither L-selectin nor T lymphocytes showed appreciable binding to the sulfated carbohydrate epitope 6-sulfo-SLe(x). P-selectin also bound to endoglycan-based GSPs but with lower affinity than toward GSPs modeled after PSGL-1, the physiological ligand for P- and L-selectin that is expressed on leukocytes. These results demonstrate that TyrSO(3) residues in association with a C2-SLe(x) moiety within endoglycan and PSGL-1 are preferentially recognized by L-selectin.
Stowell SR, Arthur CM, Dias-Baruffi M, Rodrigues LC, Gourdine J-P, Heimburg-Molinaro J, Ju T, Molinaro RJ, Rivera-Marrero C, Xia B, et al. Innate immune lectins kill bacteria expressing blood group antigen. Nat Med. 2010;16 (3) :295-301.Abstract
The expression of ABO(H) blood group antigens causes deletion of cells that generate self-specific antibodies to these antigens but this deletion limits adaptive immunity toward pathogens bearing cognate blood group antigens. To explore potential defense mechanisms against such pathogens, given these limitations in adaptive immunity, we screened for innate proteins that could recognize human blood group antigens. Here we report that two innate immune lectins, galectin-4 (Gal-4) and Gal-8, which are expressed in the intestinal tract, recognize and kill human blood group antigen-expressing Escherichia coli while failing to alter the viability of other E. coli strains or other Gram-negative or Gram-positive organisms both in vitro and in vivo. The killing activity of both Gal-4 and Gal-8 is mediated by their C-terminal domains, occurs rapidly and independently of complement and is accompanied by disruption of membrane integrity. These results demonstrate that innate defense lectins can provide immunity against pathogens that express blood group-like antigens on their surface.
Bolscher JGM, Brevoord J, Nazmi K, Ju T, Veerman ECI, van Wijk JAE, Cummings RD, van Die I. Solid-phase synthesis of a pentavalent GalNAc-containing glycopeptide (Tn antigen) representing the nephropathy-associated IgA hinge region. Carbohydr Res. 2010;345 (14) :1998-2003.Abstract
Incomplete or aberrant glycosylation leading to Tn antigen (GalNAcalpha1-Ser/Thr) expression on human glycoproteins is strongly associated with human pathological conditions, including tumors, certain autoimmune diseases, such as the idiopathic IgA nephropathy, and may modulate immune homeostasis. In addition, the Tn antigen is highly expressed by certain pathogens and plays a role in host-pathogen interactions. To enable experimental approaches to study interactions of the Tn antigen with the immune system and analyze anti-Tn antibody responses in infection or disorders, we generated a Tn-expressing resource that can be used for high-throughput screening. In consideration of IgA nephropathy in which the hinge region is incompletely glycosylated, we used this hinge sequence that encodes five potential glycosylation sites as the ideal template for the synthesis of a Tn antigen-expressing glycopeptide. Inclusion of an N-terminal biotin in the peptide enabled binding to streptavidin-coated ELISA plates as monitored using Helix pomatia agglutinin or anti-Tn monoclonal antibody. We also found that the biotinylated IgA-Tn peptide is a functional acceptor for beta1-3-galactosylation using recombinant T-synthase (beta1-3-galactosyltransferase). Besides its immunochemical functionality as a possible diagnostic tool for IgA nephropathy, the peptide is an excellent substrate for glycan elongation and represents a novel template applicable for glycan-antigen-associated diseases.
Krishnamurthy VR, Dougherty A, Kamat M, Song X, Cummings RD, Chaikof EL. Synthesis of an Fmoc-threonine bearing core-2 glycan: a building block for PSGL-1 via Fmoc-assisted solid-phase peptide synthesis. Carbohydr Res. 2010;345 (11) :1541-7.Abstract
Selectins (L, E, and P) are vascular endothelial molecules that play an important role in the recruitment of leukocytes to inflamed tissue. In this regard, P-Selectin glycoprotein-1 (PSGL-1) has been identified as a ligand for P-Selectin. PSGL-1 binds to P-Selectin through the interaction of core-2 O-glycan expressing sialyl Lewis(x) oligosaccharide and the three tyrosine sulfate residues. Herein, we report the synthesis of threonine-linked core-2 O-glycan as an amino acid building block for the synthesis of PSGL-1. This building block was further incorporated in the Fmoc-assisted solid-phase peptide synthesis to provide a portion of the PSGL-1 glycopeptide.
Huang W, Zhang X, Ju T, Cummings RD, Wang L-X. Expeditious chemoenzymatic synthesis of CD52 glycopeptide antigens. Org Biomol Chem. 2010;8 (22) :5224-33.Abstract
CD52 is a glycosylphosphatidylinositol (GPI)-anchored glycopeptide antigen found on sperm cells and human lymphocytes. Recent structural studies indicate that sperm-associated CD52 antigen carries both a complex type N-glycan and an O-glycan on the polypeptide backbone. To facilitate functional and immunological studies of distinct CD52 glycoforms, we report in this paper the first chemoenzymatic synthesis of homogeneous CD52 glycoforms carrying both N- and O-glycans. The synthetic strategy consists of two key steps: monosaccharide primers GlcNAc and GalNAc were first installed at the pre-determined N- and O-glycosylation sites by a facile solid-phase peptide synthesis, and then the N- and O-glycans were extended by respective enzymatic glycosylations. It was found that the endoglycosidase-catalyzed transglycosylation allowed efficient attachment of an intact N-glycan in a single step at the N-glycosylation site, while the recombinant human T-synthase could independently extend the O-linked GalNAc to form the core 1 O-glycan. This chemoenzymatic approach is highly convergent and permits easy construction of various homogeneous CD52 glycoforms from a common polypeptide precursor. In addition, the introduction of a latent thiol group in the form of protected cysteamine at the C-terminus of the CD52 glycoforms will enable site-specific conjugation to a carrier protein to provide immunogens for generating CD52 glycoform-specific antibodies for functional studies.
Leppänen A, Cummings RD. Fluorescence-based solid-phase assays to study glycan-binding protein interactions with glycoconjugates. Methods Enzymol. 2010;478 :241-64.Abstract
Development of glycan microarray technologies have recently revealed many new features in the binding specificities of glycan-binding proteins (GBPs) including animal and plant lectins, antibodies, toxins, and pathogens, including viruses and bacteria. Printed glycan microarrays are very sensitive, robust, and require very small quantities of glycans and GBPs. However, glycan arrays have been limited mostly to chemoenzymatically synthesized oligosaccharides and N-glycans isolated from natural glycoproteins. O-Glycans and more complex glycoconjugates, such as glycopeptides or whole cells, are generally lacking from most types of glycan microarrays. Certain GBPs such as selectins, that have more complex binding specificity, require peptide components besides the glycan structure for high-affinity binding to the ligand. GBP binding assays on glycan microarrays will provide only partial information about the specificity and high-affinity ligands for those GBPs. Therefore, more "natural" glycoconjugate arrays are required to study more complex GBP-glycoconjugate interactions. We have utilized a simple fluorescence-based solid-phase assay on a microplate format to study GBP-glycoconjugate interactions. The method utilizes commercial streptavidin-coated microplates, where various biotinylated ligands, such as glycopeptides, oligosaccharides, and whole cells, can be immobilized at a defined density. The binding of GBPs to immobilized ligands can be studied using fluorescently labeled GBPs or cells, or bound GBPs can be detected using fluorescently labeled anti-GBP antibodies. Our approach utilizing biotinylated and fixed cells in a solid-phase assay is a versatile method to study binding of GBPs to natural cell-surface glycoconjugates. Not only mammalian cells, but also microorganisms can be biotinylated and fixed, and adhesion of fluorescently labeled GBPs and antibodies to immobilized cells can be studied using standard streptavidin-coated microplates. Here, we present examples of fluorescence-based solid-phase assays to study P- and L-selectin and galectin-1 binding to immobilized glycopeptides, oligosaccharides, and cells. It should be noted that with the availability of complex glycoconjugates containing available primary amine groups, such as semisynthetic glycopeptides described here, that these could also be printed on covalent microarrays for interrogation by GBPs.
Lee WY, Weber DA, Laur O, Stowell SR, McCall I, Andargachew R, Cummings RD, Parkos CA. The role of cis dimerization of signal regulatory protein alpha (SIRPalpha) in binding to CD47. J Biol Chem. 2010;285 (49) :37953-63.Abstract
Interaction of SIRPα with its ligand, CD47, regulates leukocyte functions, including transmigration, phagocytosis, oxidative burst, and cytokine secretion. Recent progress has provided significant insights into the structural details of the distal IgV domain (D1) of SIRPα. However, the structural roles of proximal IgC domains (D2 and D3) have been largely unstudied. The high degree of conservation of D2 and D3 among members of the SIRP family as well as the propensity of known IgC domains to assemble in cis has led others to hypothesize that SIRPα forms higher order structures on the cell surface. Here we report that SIRPα forms noncovalently linked cis homodimers. Treatment of SIRPα-expressing cells with a membrane-impermeable cross-linker resulted in the formation of SDS-stable SIRPα dimers and oligomers. Biochemical analyses of soluble recombinant extracellular regions of SIRPα, including domain truncation mutants, revealed that each of the three extracellular immunoglobulin loops of SIRPα formed dimers in solution. Co-immunoprecipitation experiments using cells transfected with different affinity-tagged SIRPα molecules revealed that SIRPα forms cis dimers. Interestingly, in cells treated with tunicamycin, SIRPα dimerization but not CD47 binding was inhibited, suggesting that a SIRPα dimer is probably bivalent. Last, we demonstrate robust dimerization of SIRPa in adherent, stimulated human neutrophils. Collectively, these data are consistent with SIRPα being expressed on the cell surface as a functional cis-linked dimer.
Smith DF, Song X, Cummings RD. Use of glycan microarrays to explore specificity of glycan-binding proteins. Methods Enzymol. 2010;480 :417-44.Abstract
Microarrays of defined glycans represent a high throughput approach to determining the specificity of lectins, or more generally glycan-binding proteins (GBPs). The utility of a glycan microarray is directly related to the number and variety of the glycans available on the printed surface for interrogation by GBPs. The Consortium for Functional Glycomics (CFG), funded by the National Institute of General Medical Sciences (NIGMS), has generated a glycan microarray available to the public as an investigator-driven resource, where hundreds of GBPs have been analyzed. Here we describe the methods generally used by the CFG to prepare glycan arrays and interrogate them with GBPs. We also describe our new approach to normalizing glycan microarray data derived from concentration-dependent analyses of GBP binding, and the application of this approach with the plant lectin Sambucus nigra agglutinin (SNA-I) and human galectin-8. The use of glycan microarrays with this approach readily generates a prediction of the glycan determinants required for high affinity binding by a GBP.
2009
Babu P, North SJ, Jang-Lee J, Chalabi S, Mackerness K, Stowell SR, Cummings RD, Rankin S, Dell A, Haslam SM. Structural characterisation of neutrophil glycans by ultra sensitive mass spectrometric glycomics methodology. Glycoconj J. 2009;26 (8) :975-86.Abstract
Neutrophils are the most abundant white blood cells in humans and play a vital role in several aspects of the immune response. Numerous reports have implicated neutrophil glycosylation as an important factor in mediating these interactions. We report here the application of high sensitivity glycomics methodologies, including matrix assisted laser desorption ionisation (MALDI-TOF) and MALDI-TOF/TOF analyses, to the structural analysis of N- and O-linked carbohydrates released from two samples of neutrophils, prepared by two separate and geographically remote laboratories. The data produced demonstrates that the cells display a diverse range of sialylated and fucosylated complex glycans, with a high level of similarity between the two preparations.
Stowell SR, Karmakar S, Arthur CM, Ju T, Rodrigues LC, Riul TB, Dias-Baruffi M, Miner J, McEver RP, Cummings RD. Galectin-1 induces reversible phosphatidylserine exposure at the plasma membrane. Mol Biol Cell. 2009;20 (5) :1408-18.Abstract
Cells normally undergo physiological turnover through the induction of apoptosis and phagocytic removal, partly through exposure of cell surface phosphatidylserine (PS). In contrast, neutrophils appear to possess apoptosis-independent mechanisms of removal. Here we show that Galectin-1 (Gal-1) induces PS exposure independent of alterations in mitochondrial potential, caspase activation, or cell death. Furthermore, Gal-1-induced PS exposure reverts after Gal-1 removal without altering cell viability. Gal-1-induced PS exposure is uniquely microdomain restricted, yet cells exposing PS do not display evident alterations in membrane morphology nor do they exhibit bleb formation, typically seen in apoptotic cells. Long-term exposure to Gal-1 prolongs PS exposure with no alteration in cell cycle progression or cell growth. These results demonstrate that Gal-1-induced PS exposure and subsequent phagocytic removal of living cells represents a new paradigm in cellular turnover.
Hernandez Mir G, Helin J, Skarp K-P, Cummings RD, Mäkitie A, Renkonen R, Leppänen A. Glycoforms of human endothelial CD34 that bind L-selectin carry sulfated sialyl Lewis x capped O- and N-glycans. Blood. 2009;114 (3) :733-41.Abstract
Endothelial sialomucin CD34 functions as an L-selectin ligand mediating lymphocyte extravasation only when properly glycosylated to express a sulfated carbohydrate epitope, 6-sulfo sialyl Lewis x (6-sulfo SLe(x)). It is thought that multivalent 6-sulfo SLe(x) expression promotes high-affinity binding to L-selectin by enhancing avidity. However, the reported low amount of 6-sulfo SLe(x) in total human CD34 is inconsistent with this model and prompted us to re-evaluate CD34 glycosylation. We separated CD34 into 2 glycoforms, the L-selectin-binding and nonbinding glycoforms, L-B-CD34 and L-NB-CD34, respectively, and analyzed released O- and N-glycans from both forms. L-B-CD34 is relatively minor compared with L-NB-CD34 and represented less than 10% of total tonsillar CD34. MECA-79, a mAb to sulfated core-1 O-glycans, bound exclusively to L-B-CD34 and this form contained all sulfated and fucosylated O-glycans. 6-Sulfo SLe(x) epitopes occur on core-2 and extended core-1 O-glycans with approximately 20% of total L-B-CD34 O-glycans expressing 6-sulfo SLe(x). N-glycans containing potential 6-sulfo SLe(x) epitopes were also present in L-B-CD34, but their removal did not abolish binding to L-selectin. Thus, a minor glycoform of CD34 carries relatively abundant 6-sulfo SLe(x) epitopes on O-glycans that are important for its recognition by L-selectin.
von Gunten S, Smith DF, Cummings RD, Riedel S, Miescher S, Schaub A, Hamilton RG, Bochner BS. Intravenous immunoglobulin contains a broad repertoire of anticarbohydrate antibodies that is not restricted to the IgG2 subclass. J Allergy Clin Immunol. 2009;123 (6) :1268-76.e15.Abstract
BACKGROUND: Specificities for carbohydrate IgG antibodies, thought to be predominantly of the IgG2 subclass, have never been broadly examined in healthy human subjects. OBJECTIVE: To examine commercial intravenous immunoglobulin (IVIG) preparations for their ability to recognize a wide range of glycans and to determine the contribution of IgG2 to the binding pattern observed. METHODS: We used a glycan microarray to evaluate IVIG preparations and a control mix of similar proportions of human myeloma IgG1 and IgG2 for binding to 377 glycans, courtesy of the Consortium for Functional Glycomics Core H. Glycans recognized were categorized using public databases for their likely cellular sources. IgG2 was depleted from IVIG by using immunoaffinity chromatography, and depletion was confirmed by using nephelometry and surface plasmon resonance. RESULTS: Nearly half of the glycans bound IgG. Some of the glycans with the greatest antibody binding can be found in structures of human pathogenic bacteria (eg, Streptococcus pneumoniae, Mycobacterium tuberculosis, Vibrio cholera) and nonpathogenic bacteria, including LPS and lipoteichoic acid, capsular polysaccharides, and exopolysaccharides. Surprisingly, depletion of IgG2 had only a modest effect on anticarbohydrate recognition patterns compared with the starting IVIG preparation. Little to no binding activity was detected to human endogenous glycans, including tumor-associated antigens. CONCLUSIONS: This novel, comprehensive analysis provides evidence that IVIG contains a much wider range than previously appreciated of anticarbohydrate IgG antibodies, including those recognizing both pathogenic and non-pathogen-associated prokaryotic glycans.
Stowell SR, Cho M, Feasley CL, Arthur CM, Song X, Colucci JK, Karmakar S, Mehta P, Dias-Baruffi M, McEver RP, et al. Ligand reduces galectin-1 sensitivity to oxidative inactivation by enhancing dimer formation. J Biol Chem. 2009;284 (8) :4989-99.Abstract
Galectin-1 (Gal-1) regulates leukocyte turnover by inducing the cell surface exposure of phosphatidylserine (PS), a ligand that targets cells for phagocytic removal, in the absence of apoptosis. Gal-1 monomer-dimer equilibrium appears to modulate Gal-1-induced PS exposure, although the mechanism underlying this regulation remains unclear. Here we show that monomer-dimer equilibrium regulates Gal-1 sensitivity to oxidation. A mutant form of Gal-1, containing C2S and V5D mutations (mGal-1), exhibits impaired dimerization and fails to induce cell surface PS exposure while retaining the ability to recognize carbohydrates and signal Ca(2+) flux in leukocytes. mGal-1 also displayed enhanced sensitivity to oxidation, whereas ligand, which partially protected Gal-1 from oxidation, enhanced Gal-1 dimerization. Continual incubation of leukocytes with Gal-1 resulted in gradual oxidative inactivation with concomitant loss of cell surface PS, whereas rapid oxidation prevented mGal-1 from inducing PS exposure. Stabilization of Gal-1 or mGal-1 with iodoacetamide fully protected Gal-1 and mGal-1 from oxidation. Alkylation-induced stabilization allowed Gal-1 to signal sustained PS exposure in leukocytes and mGal-1 to signal both Ca(2+) flux and PS exposure. Taken together, these results demonstrate that monomer-dimer equilibrium regulates Gal-1 sensitivity to oxidative inactivation and provides a mechanism whereby ligand partially protects Gal-1 from oxidation.
Mitoma J, Miyazaki T, Sutton-Smith M, Suzuki M, Saito H, Yeh J-C, Kawano T, Hindsgaul O, Seeberger PH, Panico M, et al. The N-glycolyl form of mouse sialyl Lewis X is recognized by selectins but not by HECA-452 and FH6 antibodies that were raised against human cells. Glycoconj J. 2009;26 (5) :511-23.Abstract
E-, P- and L-selectins critically function in lymphocyte recirculation and recruiting leukocytes to inflammatory sites. MECA-79 antibody inhibits L-selectin-mediated lymphocyte adhesion in several species and does not require sialic acid in its epitope. Many other antibodies, however, recognize human selectin ligands expressing N-acetylneuraminic acid but not mouse selectin ligands expressing N-glycolylneuraminic acid, suggesting that difference in sialic acid in sialyl Lewis X leads to differential reactivity. We found that HECA-452 and FH6 monoclonal antibodies bind Chinese hamster ovary (CHO) cells expressing N-acetylneuraminyl Lewis X oligosaccharide but not its N-glycolyl form. Moreover, synthetic N-acetylneuraminyl Lewis X oligosaccharide but not its N-glycolyl oligosaccharide inhibited HECA-452 and FH6 binding. By contrast, E-, P- and L-selectin bound to CHO cells regardless of whether they express N-acetyl or N-glycolyl form of sialyl Lewis X, showing that selectins have a broader recognition capacity than HECA-452 and FH-6 anti-sialyl Lewis x antibodies.

Pages