Publications

2019
Wheeler KM, Cárcamo-Oyarce G, Turner BS, Dellos-Nolan S, Co JY, Lehoux S, Cummings RD, Wozniak DJ, Ribbeck K. Mucin glycans attenuate the virulence of Pseudomonas aeruginosa in infection. Nat Microbiol. 2019;4 (12) :2146-2154.Abstract
A slimy, hydrated mucus gel lines all wet epithelia in the human body, including the eyes, lungs, and gastrointestinal and urogenital tracts. Mucus forms the first line of defence while housing trillions of microorganisms that constitute the microbiota. Rarely do these microorganisms cause infections in healthy mucus, suggesting that mechanisms exist in the mucus layer that regulate virulence. Using the bacterium Pseudomonas aeruginosa and a three-dimensional (3D) laboratory model of native mucus, we determined that exposure to mucus triggers downregulation of virulence genes that are involved in quorum sensing, siderophore biosynthesis and toxin secretion, and rapidly disintegrates biofilms-a hallmark of mucosal infections. This phenotypic switch is triggered by mucins, which are polymers that are densely grafted with O-linked glycans that form the 3D scaffold inside mucus. Here, we show that isolated mucins act at various scales, suppressing distinct virulence pathways, promoting a planktonic lifestyle, reducing cytotoxicity to human epithelia in vitro and attenuating infection in a porcine burn model. Other viscous polymer solutions lack the same effect, indicating that the regulatory function of mucin does not result from its polymeric structure alone. We identify that interactions with P. aeruginosa are mediated by mucin-associated glycans (mucin glycans). By isolating glycans from the mucin backbone, we assessed the collective activity of hundreds of complex structures in solution. Similar to their grafted counterparts, free mucin glycans potently regulate bacterial phenotypes even at relatively low concentrations. This regulatory function is likely dependent on glycan complexity, as monosaccharides do not attenuate virulence. Thus, mucin glycans are potent host signals that 'tame' microorganisms, rendering them less harmful to the host.
Wei M, McKitrick TR, Mehta AY, Gao C, Jia N, McQuillan AM, Heimburg-Molinaro J, Sun L, Cummings RD. Novel Reversible Fluorescent Glycan Linker for Functional Glycomics. Bioconjug Chem. 2019;30 (11) :2897-2908.Abstract
To aid in generating complex and diverse natural glycan libraries for functional glycomics, more efficient and reliable methods are needed to derivatize glycans. Here we present our development of a reversible, cleavable bifunctional linker 3-(methoxyamino)propylamine (MAPA). As the fluorenylmethyloxycarbonate (Fmoc) version (F-MAPA), it is highly fluorescent and efficiently derivatizes free reducing glycans to generate closed-ring derivatives that preserve the structural integrity of glycans. A library of glycans were derivatized and used to generate a covalent glycan microarray using -hydroxysuccinimide derivatization. The array was successfully interrogated by a variety of lectins and antibodies, demonstrating the importance of closed-ring chemistry. The glycan derivatization was also performed at large scale using milligram quantities of glycans and excess F-MAPA, and the reaction system was successfully recycled up to five times, without an apparent decrease in conjugation efficiency. The MAPA-glycan is also easy to link to protein to generate neoglycoproteins with equivalent glycan densities. Importantly, the MAPA linker can be reversibly cleaved to regenerate free reducing glycans for detailed structural analysis (catch-and-release), often critical for functional studies of undefined glycans from natural sources. The high conjugation efficiency, bright fluorescence, and reversible cleavage of the linker enable access to natural glycans for functional glycomics.
Byrd-Leotis L, Gao C, Jia N, Mehta AY, Trost J, Cummings SF, Heimburg-Molinaro J, Cummings RD, Steinhauer DA. Antigenic Pressure on H3N2 Influenza Virus Drift Strains Imposes Constraints on Binding to Sialylated Receptors but Not Phosphorylated Glycans. J Virol. 2019;93 (22).Abstract
H3N2 strains of influenza A virus emerged in humans in 1968 and have continued to circulate, evolving in response to human immune pressure. During this process of "antigenic drift," viruses have progressively lost the ability to agglutinate erythrocytes of various species and to replicate efficiently under the established conditions for amplifying clinical isolates and generating vaccine candidates. We have determined the glycome profiles of chicken and guinea pig erythrocytes to gain insights into reduced agglutination properties displayed by drifted strains and show that both chicken and guinea pig erythrocytes contain complex sialylated N-glycans but that they differ with respect to the extent of branching, core fucosylation, and the abundance of poly-N-acetyllactosamine (PL) [-3Galβ1-4GlcNAcβ1-] structures. We also examined binding of the H3N2 viruses using three different glycan microarrays: the synthetic Consortium for Functional Glycomics array; the defined N-glycan array designed to reveal contributions to binding based on sialic acid linkage type, branched structures, and core modifications; and the human lung shotgun glycan microarray. The results demonstrate that H3N2 viruses have progressively lost their capacity to bind nearly all canonical sialylated receptors other than a selection of biantennary structures and PL structures with or without sialic acid. Significantly, all viruses displayed robust binding to nonsialylated high-mannose phosphorylated glycans, even as the recognition of sialylated structures is decreased through antigenic drift. Influenza subtype H3N2 viruses have circulated in humans for over 50 years, continuing to cause annual epidemics. Such viruses have undergone antigenic drift in response to immune pressure, reducing the protective effects of preexisting immunity to previously circulating H3N2 strains. The changes in hemagglutinin (HA) affiliated with drift have implications for the receptor binding properties of these viruses, affecting virus replication in the culture systems commonly used to generate and amplify vaccine strains. Therefore, the antigenic properties of the vaccines may not directly reflect those of the circulating strains from which they were derived, compromising vaccine efficacy. In order to reproducibly provide effective vaccines, it will be critical to understand the interrelationships between binding, antigenicity, and replication properties in different growth substrates.
McQuillan AM, Byrd-Leotis L, Heimburg-Molinaro J, Cummings RD. Natural and Synthetic Sialylated Glycan Microarrays and Their Applications. Front Mol Biosci. 2019;6 :88.Abstract
This focused chapter serves as a short survey of glycan microarrays that are available with sialylated glycans, including both defined and shotgun arrays, their generation, and their utility in studying differential binding interactions to sialylated compounds, highlighting N-glycolyl (Gc) modified sialylated compounds. A brief discussion of binding interactions by lectins, antibodies, and viruses, and their relevance that have been observed with sialylated glycan microarrays is presented, as well as a discussion of cross-comparisons of array platforms and efforts to centralize and standardize the glycan microarray data.
Cummings RD. "Stuck on sugars - how carbohydrates regulate cell adhesion, recognition, and signaling". Glycoconj J. 2019;36 (4) :241-257.Abstract
We have explored the fundamental biological processes by which complex carbohydrates expressed on cellular glycoproteins and glycolipids and in secretions of cells promote cell adhesion and signaling. We have also explored processes by which animal pathogens, such as viruses, bacteria, and parasites adhere to glycans of animal cells and initiate disease. Glycans important in cell signaling and adhesion, such as key O-glycans, are essential for proper animal development and cellular differentiation, but they are also involved in many pathogenic processes, including inflammation, tumorigenesis and metastasis, and microbial and parasitic pathogenesis. The overall hypothesis guiding these studies is that glycoconjugates are recognized and bound by a growing class of proteins called glycan-binding proteins (GBPs or lectins) expressed by all types of cells. There is an incredible variety and diversity of GBPs in animal cells involved in binding N- and O-glycans, glycosphingolipids, and proteoglycan/glycosaminoglycans. We have specifically studied such molecular determinants recognized by selectins, galectins, and many other C-type lectins, involved in leukocyte recruitment to sites of inflammation in human tissues, lymphocyte trafficking, adhesion of human viruses to human cells, structure and immunogenicity of glycoproteins on the surfaces of human parasites. We have also explored the molecular basis of glycoconjugate biosynthesis by exploring the enzymes and molecular chaperones required for correct protein glycosylation. From these studies opportunities for translational biology have arisen, involving production of function-blocking antibodies, anti-glycan specific antibodies, and synthetic glycoconjugates, e.g. glycosulfopeptides, that specifically are recognized by GBPs. This invited short review is based in part on my presentation for the IGO Award 2019 given by the International Glycoconjugate Organization in Milan.
Byrd-Leotis L, Jia N, Dutta S, Trost JF, Gao C, Cummings SF, Braulke T, Müller-Loennies S, Heimburg-Molinaro J, Steinhauer DA, et al. Influenza binds phosphorylated glycans from human lung. Sci Adv. 2019;5 (2). Publisher's VersionAbstract
Influenza A viruses can bind sialic acid-terminating glycan receptors, and species specificity is often correlated with sialic acid linkage with avian strains recognizing α2,3-linked sialylated glycans and mammalian strains preferring α2,6-linked sialylated glycans. These paradigms derive primarily from studies involving erythrocyte agglutination, binding to synthetic receptor analogs or binding to undefined surface markers on cells or tissues. Here, we present the first examination of the N-glycome of the human lung for identifying natural receptors for a range of avian and mammalian influenza viruses. We found that the human lung contains many α2,3- and α2,6-linked sialylated glycan determinants bound by virus, but all viruses also bound to phosphorylated, nonsialylated glycans.
Gao C, Hanes MS, Byrd-Leotis L, Wei M, Jia N, Kardish RJ, McKitrick TR, Steinhauer DA, Cummings RD. Unique Binding Specificities of Proteins toward Isomeric Asparagine-Linked Glycans. Cell Chem Biol. 2019;26 (4) :535-347. Publisher's VersionAbstract
The glycan ligands recognized by Siglecs, influenza viruses, and galectins, as well as many plant lectins, are not well defined. To explore their binding to asparagine (Asn)-linked N-glycans, we synthesized a library of isomeric multiantennary N-glycans that vary in terminal non-reducing sialic acid, galactose, and N-acetylglucosamine residues, as well as core fucose. We identified specific recognition of N-glycans by several plant lectins, human galectins, influenza viruses, and Siglecs, and explored the influence of sialic acid linkages and branching of the N-glycans. These results show the unique recognition of complex-type N-glycans by a wide variety of glycan-binding proteins and their abilities to distinguish isomeric structures, which provides new insights into the biological roles of these proteins and the uses of lectins in biological applications to identify glycans.
Smith DF, Cummings RD, Song X. History and future of shotgun glycomics. Biochem Soc Trans. 2019;47 (1) :1-11. Publisher's VersionAbstract
Glycans in polysaccharides and glycoconjugates of the hydrophilic exterior of all animal cells participate in signal transduction, cellular adhesion, intercellular signaling, and sites for binding of pathogens largely through protein-glycan interactions. Microarrays of defined glycans have been used to study the binding specificities of biologically relevant glycan-binding proteins (GBP), but such arrays are limited by their lack of diversity or relevance to the GBP being investigated. Shotgun glycan microarrays are made up of structurally undefined glycans that were released from natural sources, labeled with bifunctional reagents so that they can be monitored during their purification using multidimensional chromatographic procedures, stored as a tagged glycan library (TGL) and subsequently printed onto microarrays at equal molar concentrations. The shotgun glycan microarray is then interrogated with a biologically relevant GBP and the corresponding glycan ligands can be retrieved from the TGL for detailed structural analysis and further functional analysis. Shotgun glycomics extended the defined glycan microarray to a discovery platform that supports functional glycomic analyses and may provide a useful process for ultimately defining the human glycome.
Mehta A, Cummings RD. GLAD: GLycan Array Dashboard, a Visual Analytics Tool for Glycan Microarrays. Bioinformatics. 2019. Publisher's VersionAbstract

MOTIVATION:

Traditional glycan microarray data is typically presented as excel files with limited visualization and interactivity. Thus, comparisons and analysis of glycan array data have been difficult, and there is need for a tool to facilitate data mining of glycan array data.

RESULTS:

GLAD (GLycan Array Dashboard) is a web-based tool to visualize, analyze, present, and mine glycan microarray data. GLAD allows users to input multiple data files to create comparisons. GLAD extends the capability of the microarray data to produce more comparative visualizations in the form of grouped bar charts, heatmaps, calendar heatmaps, force graphs and correlation maps in order to analyze broad sets of samples. Additionally, it allows users to filter, sort and normalize the data and view glycan structures in an interactive manner, to facilitate faster visual data mining.

AVAILABILITY:

GLAD is freely available for use on the Web at https://glycotoolkit.com/Tools/GLAD/ with all major modern browsers (Edge, Firefox, Chrome, Safari).

SUPPLEMENTARY INFORMATION:

Full documentation and video tutorials for GLAD can be found on https://glycotoolkit.com/GLAD.

Lu LL, Smith MT, Yu KKQ, Luedemann C, Suscovich TJ, Grace PS, Cain A, Yu WH, McKitrick TR, Lauffenburger D, et al. IFN-γ-independent immune markers of Mycobacterium tuberculosis exposure. Nat Med. 2019;9 (6) :977-987. Publisher's VersionAbstract
Exposure to Mycobacterium tuberculosis (Mtb) results in heterogeneous clinical outcomes including primary progressive tuberculosis and latent Mtb infection (LTBI). Mtb infection is identified using the tuberculin skin test and interferon-γ (IFN-γ) release assay IGRA, and a positive result may prompt chemoprophylaxis to prevent progression to tuberculosis. In the present study, we report on a cohort of Ugandan individuals who were household contacts of patients with TB. These individuals were highly exposed to Mtb but tested negative disease by IFN-γ release assay and tuberculin skin test, 'resisting' development of classic LTBI. We show that 'resisters' possess IgM, class-switched IgG antibody responses and non-IFN-γ T cell responses to the Mtb-specific proteins ESAT6 and CFP10, immunologic evidence of exposure to Mtb. Compared to subjects with classic LTBI, 'resisters' display enhanced antibody avidity and distinct Mtb-specific IgG Fc profiles. These data reveal a distinctive adaptive immune profile among Mtb-exposed subjects, supporting an expanded definition of the host response to Mtb exposure, with implications for public health and the design of clinical trials.
Pettinato G, Lehoux S, Ramanathan R, Salem MM, He LX, Muse O, Flaumenhaft R, Thompson MT, Rouse EA, Cummings RD, et al. Generation of fully functional hepatocyte-like organoids from human induced pluripotent stem cells mixed with Endothelial Cells. Sci Rep. 2019;9 (1). Publisher's VersionAbstract
Despite advances in stem cell research, cell transplantation therapy for liver failure is impeded by a shortage of human primary hepatocytes (HPH), along with current differentiation protocol limitations. Several studies have examined the concept of co-culture of human induced pluripotent cells (hiPSCs) with various types of supporting non-parenchymal cells to attain a higher differentiation yield and to improve hepatocyte-like cell functions both in vitro and in vivo. Co-culturing hiPSCs with human endothelial cells (hECs) is a relatively new technique that requires more detailed studies. Using our 3D human embryoid bodies (hEBs) formation technology, we interlaced Human Adipose Microvascular Endothelial Cells (HAMEC) with hiPSCs, leading to a higher differentiation yield and notable improvements across a wide range of hepatic functions. We conducted a comprehensive gene and protein secretion analysis of our HLCs coagulation factors profile, showing promising results in comparison with HPH. Furthermore, a stage-specific glycomic analysis revealed that the differentiated hepatocyte-like clusters (HLCs) resemble the glycan features of a mature tissue rather than cells in culture. We tested our HLCs in animal models, where the presence of HAMEC in the clusters showed a consistently better performance compared to the hiPSCs only group in regard to persistent albumin secretion post-transplantation.
Tuccinardi D, Farr OM, Upadhyay J, Oussaada SM, Klapa MI, Candela M, Rampelli S, Lehoux S, Lázaro I, Sala-Vila A, et al. Mechanisms Underlying the Cardiometabolic Protective Effect of Walnut Consumption in Obese Subjects: A Cross-Over, Randomized, Double-Blinded, Controlled Inpatient Physiology Study. Diabetes Obes Metab. 2019. Publisher's VersionAbstract

AIMS:

To assess the effects of walnuts on cardiometabolic outcomes in obese subjects and to explore underlying mechanisms using novel methods including metabolomic, lipidomic, glycomic, and microbiome analysis integrated with lipid particle fractionation, appetite-regulating hormones and hemodynamic measurements.

MATERIALS AND METHODS:

10 obese subjects were enrolled in this cross-over, randomized, double-blind, placebo-controlled clinical trial. Patients participated in two 5-day inpatient stays during which they consumed a smoothie containing 48g walnuts or a macronutrient-matched placebo smoothie without nuts, with a one-month washout period between the two visits.

RESULTS:

Walnut consumption improved aspects of the lipid profile, i.e. reduced fasting small and dense LDL particles (p<.02) and increased postprandial large HDL particles (p<.01). Lipoprotein Insulin Resistance Score, glucose and insulin AUC decreased significantly after walnut consumption (p<.01, p<.02, p<.04, respectively). Consuming walnuts significantly increased 10 N-glycans, with 8 of them carrying a fucose core. Lipidomic analysis showed a robust reduction in harmful ceramides, hexosylceramides and sphingomyelins, which have been shown to mediate effects on cardiometabolic risk. Peptide YY AUC significantly increased after walnut consumption (p<.03). No major significant changes in hemodynamic, metabolomic analysis or in host health-promoting bacteria such as Faecalibacterium were found.

CONCLUSIONS:

These data provide a more comprehensive mechanistic perspective of the effect of dietary walnut consumption on cardiometabolic parameters. Lipidomic and lipid nuclear magnetic resonance spectroscopy analysis showed an early but significant reduction in ceramides and other atherogenic lipids with walnut consumption that may explain the longer-term benefits of walnuts on insulin resistance, cardiovascular risk and mortality. This article is protected by copyright. All rights reserved.

Woodward AM, Lehoux S, Mantelli F, Di Zazzo A, Brockhausen I, Bonini S, Argüeso P. Inflammatory Stress Causes N-Glycan Processing Deficiency in Ocular Autoimmune Disease. Am J Pathol. 2019;189 (2) :283-294. Publisher's VersionAbstract
High levels of proinflammatory cytokines have been associated with a loss of tissue function in ocular autoimmune diseases, but the basis for this relationship remains poorly understood. Here we investigate a new role for tumor necrosis factor α in promoting N-glycan-processing deficiency at the surface of the eye through inhibition of N-acetylglucosaminyltransferase expression in the Golgi. Using mass spectrometry, complex-type biantennary oligosaccharides were identified as major N-glycan structures in differentiated human corneal epithelial cells. Remarkably, significant differences were detected between the efficacies of cytokines in regulating the expression of glycogenes involved in the biosynthesis of N-glycans. Tumor necrosis factor α but not IL-1β had a profound effect in suppressing the expression of enzymes involved in the Golgi branching pathway, including N-acetylglucosaminyltransferases 1 and 2, which are required for the formation of biantennary structures. This decrease in gene expression was correlated with a reduction in enzymatic activity and impaired N-glycan branching. Moreover, patients with ocular mucous membrane pemphigoid were characterized by marginal N-acetylglucosaminyltransferase expression and decreased N-glycan branching in the conjunctiva. Together, these data indicate that proinflammatory cytokines differentially influence the expression of N-glycan-processing enzymes in the Golgi and set the stage for future studies to explore the pathophysiology of ocular autoimmune diseases.
2018
Koelsch KA, Cavett J, Smith K, Moore JS, Lehoux SD, Jia N, Mather T, Quadri SMS, Rasmussen A, Kaufman EC, et al. Evidence of Alternative Modes of B Cell Activation Involving Acquired Fab Regions of N-Glycosylation in Antibody-Secreting Cells Infiltrating the Labial Salivary Glands of Patients With Sjögren's Syndrome. Arthritis Rheumatol. 2018;70 (7) :1102-1113.Abstract
OBJECTIVE: To better understand the role of B cells, the potential mechanisms responsible for their aberrant activation, and the production of autoantibodies in the pathogenesis of Sjögren's syndrome (SS), this study explored patterns of selection pressure and sites of N-glycosylation acquired by somatic mutation (acN-glyc) in the IgG variable (V) regions of antibody-secreting cells (ASCs) isolated from the minor salivary glands of patients with SS and non-SS control patients with sicca symptoms. METHODS: A novel method to produce and characterize recombinant monoclonal antibodies (mAb) from single cell-sorted ASC infiltrates was applied to concurrently probe expressed genes (all heavy- and light-chain isotypes as well as any other gene of interest not related to immunoglobulin) in the labial salivary glands of patients with SS and non-SS controls. V regions were amplified by reverse transcription-polymerase chain reaction, sequenced, and analyzed for the incidence of N-glycosylation and selection pressure. For specificity testing, the amplified regions were expressed as either the native mAb or mutant mAb lacking the acN-glyc motif. Protein modeling was used to demonstrate how even an acN-glyc site outside of the complementarity-determining region could participate in, or inhibit, antigen binding. RESULTS: V-region sequence analyses revealed clonal expansions and evidence of secondary light-chain editing and allelic inclusion, of which neither of the latter two have previously been reported in patients with SS. Increased frequencies of acN-glyc were found in the sequences from patients with SS, and these acN-glyc regions were associated with an increased number of replacement mutations and lowered selection pressure. A clonal set of polyreactive mAb with differential framework region 1 acN-glyc motifs was also identified, and removal of the acN-glyc could nearly abolish binding to autoantigens. CONCLUSION: These findings support the notion of an alternative mechanism for the selection and proliferation of some autoreactive B cells, involving V-region N-glycosylation, in patients with SS.
Bishnoi R, Mahajan S, Ramya TNC. An F-type lectin domain directs the activity of Streptosporangium roseum alpha-l-fucosidase. Glycobiology. 2018;28 (11) :860-875.Abstract
F-type lectins are phylogenetically widespread but selectively distributed fucose-binding lectins with L-fucose- and calcium-binding sequence motifs and an F-type lectin fold. Bacterial F-type lectin domains frequently occur in tandem with various protein domains in diverse architectures, indicating a possible role in directing enzyme activities or other biological functions to distinct fucosylated niches. Here, we report the biochemical characterization of a Streptosporangium roseum protein containing an F-type lectin domain in tandem with an NPCBM-associated domain and a family GH 29A alpha-l-fucosidase domain. We show that the F-type lectin domain of this protein recognizes fucosylated glycans in both α and β linkages but has high affinity for a Fuc-α-1,2-Gal motif and that the alpha-l-fucosidase domain displays hydrolytic activity on glycan substrates with α1-2 and α1-4 linked fucose. We also show that the F-type lectin domain does not have any effect on the activity of the cis-positioned alpha-l-fucosidase domain with the synthetic substrate, 4-Methylumbelliferyl-alpha-l-fucopyranoside or on inhibition of this activity by l-fucose or deoxyfuconojirimycin hydrochloride. However, the F-type lectin domain together with the NPCBM-associated domain enhances the activity of the cis-positioned alpha-l-fucosidase domain for soluble fucosylated oligosaccharide substrates. While there are many reports of glycoside hydrolase activity towards insoluble and soluble polysaccharides being enhanced by cis-positioned carbohydrate binding modules on the polypeptide, this is the first report, to our knowledge, of enhancement of activity towards aqueous, freely diffusible, small oligosaccharides. We propose a model involving structural stabilization and a bind-and-jump action mediated by the F-type lectin domain to rationalize our findings.
Sun X, Li D, Qi J, Chai W, Wang L, Wang L, Peng R, Wang H, Zhang Q, Pang L, et al. Glycan Binding Specificity and Mechanism of Human and Porcine P[6]/P[19] Rotavirus VP8*s. J Virol. 2018;92 (14).Abstract
Rotaviruses (RVs), which cause severe gastroenteritis in infants and children, recognize glycan ligands in a genotype-dependent manner via the distal VP8* head of the spike protein VP4. However, the glycan binding mechanisms remain elusive for the P[II] genogroup RVs, including the widely prevalent human RVs (P[8], P[4], and P[6]) and a rare P[19] RV. In this study, we characterized the glycan binding specificities of human and porcine P[6]/P[19] RV VP8*s and found that the P[II] genogroup RV VP8*s could commonly interact with mucin core 2, which may play an important role in RV evolution and cross-species transmission. We determined the first P[6] VP8* structure, as well as the complex structures of human P[19] VP8*, with core 2 and lacto--tetraose (LNT). A glycan binding site was identified in human P[19] VP8*. Structural superimposition and sequence alignment revealed the conservation of the glycan binding site in the P[II] genogroup RV VP8*s. Our data provide significant insight into the glycan binding specificity and glycan binding mechanism of the P[II] genogroup RV VP8*s, which could help in understanding RV evolution, transmission, and epidemiology and in vaccine development. Rotaviruses (RVs), belonging to the family , are double-stranded RNA viruses that cause acute gastroenteritis in children and animals worldwide. Depending on the phylogeny of the VP8* sequences, P[6] and P[19] RVs are grouped into genogroup II, together with P[4] and P[8], which are widely prevalent in humans. In this study, we characterized the glycan binding specificities of human and porcine P[6]/P[19] RV VP8*s, determined the crystal structure of P[6] VP8*, and uncovered the glycan binding pattern in P[19] VP8*, revealing a conserved glycan binding site in the VP8*s of P[II] genogroup RVs by structural superimposition and sequence alignment. Our data suggested that mucin core 2 may play an important role in P[II] RV evolution and cross-species transmission. These data provide insight into the cell attachment, infection, epidemiology, and evolution of P[II] genogroup RVs, which could help in developing control and prevention strategies against RVs.
Sun X, Wang L, Qi J, Li D, Wang M, Cong X, Peng R, Chai W, Zhang Q, Wang H, et al. Human Group C Rotavirus VP8*s Recognize Type A Histo-Blood Group Antigens as Ligands. J Virol. 2018;92 (11).Abstract
Group/species C rotaviruses (RVCs) have been identified as important pathogens of acute gastroenteritis (AGE) in children, family-based outbreaks, as well as animal infections. However, little is known regarding their host-specific interaction, infection, and pathogenesis. In this study, we performed serial studies to characterize the function and structural features of a human G4P[2] RVC VP8* that is responsible for the host receptor interaction. Glycan microarrays demonstrated that the human RVC VP8* recognizes type A histo-blood group antigens (HBGAs), which was confirmed by synthetic glycan-/saliva-based binding assays and hemagglutination of red blood cells, establishing a paradigm of RVC VP8*-glycan interactions. Furthermore, the high-resolution crystal structure of the human RVC VP8* was solved, showing a typical galectin-like structure consisting of two β-sheets but with significant differences from cogent proteins of group A rotaviruses (RVAs). The VP8* in complex with a type A trisaccharide displays a novel ligand binding site that consists of a particular set of amino acid residues of the C-D, G-H, and K-L loops. RVC VP8* interacts with type A HBGAs through a unique mechanism compared with that used by RVAs. Our findings shed light on the host-virus interaction and the coevolution of RVCs and will facilitate the development of specific antivirals and vaccines. Group/species C rotaviruses (RVCs), members of family, infect both humans and animals, but our knowledge about the host factors that control host susceptibility and specificity is rudimentary. In this work, we characterized the glycan binding specificity and structural basis of a human RVC that recognizes type A HBGAs. We found that human RVC VP8*, the rotavirus host ligand binding domain that shares only ∼15% homology with the VP8* domains of RVAs, recognizes type A HBGA at an as-yet-unknown glycan binding site through a mechanism distinct from that used by RVAs. Our new advancements provide insights into RVC-cell attachment, the critical step of virus infection, which will in turn help the development of control and prevention strategies against RVs.
Mahajan S, Ramya TNC. Nature-inspired engineering of an F-type lectin for increased binding strength. Glycobiology. 2018;28 (12) :933-948.Abstract
Individual lectin-carbohydrate interactions are usually of low affinity. However, high avidity is frequently attained by the multivalent presentation of glycans on biological surfaces coupled with the occurrence of high order lectin oligomers or tandem repeats of lectin domains in the polypeptide. F-type lectins are l-fucose binding lectins with a typical sequence motif, HX(26)RXDX(4)R/K, whose residues participate in l-fucose binding. We previously reported the presence of a few eukaryotic F-type lectin domains with partial sequence duplication that results in the presence of two l-fucose-binding sequence motifs. We hypothesized that such partial sequence duplication would result in greater avidity of lectin-ligand interactions. Inspired by this example from Nature, we attempted to engineer a bacterial F-type lectin domain from Streptosporangium roseum to attain avid binding by mimicking partial duplication. The engineered lectin demonstrated 12-fold greater binding strength than the wild-type lectin to multivalent fucosylated glycoconjugates. However, the affinity to the monosaccharide l-fucose in solution was similar and partial sequence duplication did not result in an additional functional l-fucose binding site. We also cloned, expressed and purified a Branchiostoma floridae F-type lectin domain with naturally occurring partial sequence duplication and confirmed that the duplicated region with the F-type lectin sequence motif did not participate in l-fucose binding. We found that the greater binding strength of the engineered lectin from S. roseum was instead due to increased oligomerization. We believe that this Nature-inspired strategy might be useful for engineering lectins to improve binding strength in various applications.
Sharma M, Hegde P, Hiremath K, Reddy H V, Kamalanathan AS, Swamy BM, Inamdar SR. Purification, characterization and fine sugar specificity of a N-Acetylgalactosamine specific lectin from Adenia hondala. Glycoconj J. 2018;35 (6) :511-523.Abstract
Plant lectins are gaining interest because of their interesting biological properties. Several Adenia species, that are being used in traditional medicine to treat many health ailments have shown presence of lectins or carbohydrate binding proteins. Here, we report the purification, characterization and biological significance of N-Acetyl galactosamine specific lectin from Adenia hondala (AHL) from Passifloraceae family. AHL was purified in a single step by affinity chromatography on asialofetuin Sepharose 4B column, characterized and its fine sugar specificity determined by glycan array analysis. AHL is human blood group non specific and also agglutinates rabbit erythrocytes. AHL is a glycoprotein with 12.5% of the carbohydrate, SDS-PAGE, MALDI-TOF-MS and ESI-MS analysis showed that AHL is a monomer of 31.6 kDa. AHL is devoid of DNase activity unlike other Ribosome inactivating proteins (RIPs). Glycan array analysis of AHL revealed its highest affinity for terminal lactosamine or polylactosamine of N- glycans, known to be over expressed in hepatocellular carcinoma and colon cancer. AHL showed strong binding to human hepatocellular carcinoma HepG2 cells with MFI of 59.1 expressing these glycans which was effectively blocked by 93.1% by asialofetuin. AHL showed dose and time dependent growth inhibitory effects on HepG2 cells with IC of 4.8 μg/ml. AHL can be explored for its clinical potential.
Gunn RJ, Herrin BR, Acharya S, Cooper MD, Wilson IA. VLR Recognition of TLR5 Expands the Molecular Characterization of Protein Antigen Binding by Non-Ig-based Antibodies. J Mol Biol. 2018;430 (9) :1350-1367.Abstract
Variable lymphocyte receptors (VLRs) are unconventional adaptive immune receptors relatively recently discovered in the phylogenetically ancient jawless vertebrates, lamprey and hagfish. VLRs bind antigens using a leucine-rich repeat fold and are the only known adaptive immune receptors that do not utilize an immunoglobulin fold for antigen recognition. While immunoglobulin antibodies have been studied extensively, there are comparatively few studies on antigen recognition by VLRs, particularly for protein antigens. Here we report isolation, functional and structural characterization of three VLRs that bind the protein toll-like receptor 5 (TLR5) from zebrafish. Two of the VLRs block binding of TLR5 to its cognate ligand flagellin in functional assays using reporter cells. Co-crystal structures revealed that these VLRs bind to two different epitopes on TLR5, both of which include regions involved in flagellin binding. Our work here demonstrates that the lamprey adaptive immune system can be used to generate high-affinity VLR clones that recognize different epitopes and differentially impact natural ligand binding to a protein antigen.

Pages