Publications by Year: 2022

2022
Cummings RD. The mannose receptor ligands and the macrophage glycome. Curr Opin Struct Biol. 2022;75 :102394.Abstract
A unique glycan-binding protein expressed in macrophages and some types of other immune cells is the mannose receptor (MR, CD206). It is an endocytic, transmembrane protein with multiple glycan-binding domains and different specificities in binding glycans. The mannose receptor is important as it has major roles in diverse biological processes, including regulation of circulating levels of reproductive hormones, homeostasis, innate immunity, and infections. These different functions involve the recognition of a wide range of glycans, and their nature is currently under intense study. But the mannose receptor is just one of many glycan-binding proteins expressed in macrophages, leading to an interest in the potential relationship between the macrophage glycome and how it may regulate cognate glycan-binding protein activities. This review focuses primarily on the mannose receptor and its carbohydrate ligands, as well as macrophages and their glycomes.
Blenda AV, Kamili NA, Wu S-C, Abel WF, Ayona D, Gerner-Smidt C, Ho AD, Benian GM, Cummings RD, Arthur CM, et al. Galectin-9 recognizes and exhibits antimicrobial activity toward microbes expressing blood group-like antigens. J Biol Chem. 2022;298 (4) :101704.Abstract
While adaptive immunity recognizes a nearly infinite range of antigenic determinants, immune tolerance renders adaptive immunity vulnerable to microbes decorated in self-like antigens. Recent studies suggest that sugar-binding proteins galectin-4 and galectin-8 bind microbes expressing blood group antigens. However, the binding profile and potential antimicrobial activity of other galectins, particularly galectin-9 (Gal-9), has remained incompletely defined. Here, we demonstrate that while Gal-9 possesses strong binding preference for ABO(H) blood group antigens, each domain exhibits distinct binding patterns, with the C-terminal domain (Gal-9C) exhibiting higher binding to blood group B than the N-terminal domain (Gal-9N). Despite this binding preference, Gal-9 readily killed blood group B-positive Escherichia coli, whereas Gal-9N displayed higher killing activity against this microbe than Gal-9C. Utilization of microarrays populated with blood group O antigens from a diverse array of microbes revealed that Gal-9 can bind various microbial glycans, whereas Gal-9N and Gal-9C displayed distinct and overlapping binding preferences. Flow cytometric examination of intact microbes corroborated the microbial glycan microarray findings, demonstrating that Gal-9, Gal-9N, and Gal-9C also possess the capacity to recognize distinct strains of Providencia alcalifaciens and Klebsiella pneumoniae that express mammalian blood group-like antigens while failing to bind related strains that do not express mammalian-like glycans. In each case of microbial binding, Gal-9, Gal-9N, and Gal-9C induced microbial death. In contrast, while Gal-9, Gal-9N, and Gal-9C engaged red blood cells, each failed to induce hemolysis. These data suggest that Gal-9 recognition of distinct microbial strains may provide antimicrobial activity against molecular mimicry.
McKitrick TR, Hanes MS, Rosenberg CS, Heimburg-Molinaro J, Cooper MD, Herrin BR, Cummings RD. Identification of Glycan-Specific Variable Lymphocyte Receptors Using Yeast Surface Display and Glycan Microarrays. Methods Mol Biol. 2022;2421 :73-89.Abstract
The jawless vertebrates (lamprey and hagfish) evolved a novel adaptive immune system with many similarities to that found in the jawed vertebrates, including the production of antigen-specific circulating antibodies in response to immunization. However, the jawless vertebrates use leucine-rich repeat (LRR)-based antigen receptors termed variable lymphocyte receptors (VLRs) for immune recognition, instead of immunoglobulin (Ig)-based receptors. VLR genes are assembled in developing lymphocytes through a gene conversion-like process, in which hundreds of LRR gene segments are randomly selected as template donors to generate a large repertoire of distinct antigen receptors, similar to that found within the mammalian adaptive immune system. Here we describe the development of a robust platform using immunized lampreys (Petromyzon marinus) for generating libraries of anti-carbohydrate (anti-glycan) variable lymphocyte receptor B, or VLRBs. The anti-carbohydrate VLRBs are isolated using a yeast surface display (YSD) expression platform and enriched by binding to glycan microarrays through the anti-glycan VLRB. This enables both the initial identification and enrichment of individual yeast clones against hundreds of glycans simultaneously. Through this enrichment strategy a broad array of glycan-specific VLRs can be isolated from the YSD library. Subsequently, the bound yeast cells are directly removed from the microarray, the VLR antibody clone is sequenced, and the end product is expressed as a VLR-IgG-Fc fusion protein that can be used for ELISA, Western blotting, flow cytometry, and immunomicroscopy. Thus, by combining yeast surface display with glycan microarray technology, we have developed a rapid, efficient, and novel method for generating chimeric VLR-IgG-Fc proteins that recognize a broad array of unique glycan structures with exquisite specificity.
Williams SE, Noel M, Lehoux S, Cetinbas M, Xavier RJ, Sadreyev RI, Scolnick EM, Smoller JW, Cummings RD, Mealer RG. Mammalian brain glycoproteins exhibit diminished glycan complexity compared to other tissues. Nat Commun. 2022;13 (1) :275.Abstract
Glycosylation is essential to brain development and function, but prior studies have often been limited to a single analytical technique and excluded region- and sex-specific analyses. Here, using several methodologies, we analyze Asn-linked and Ser/Thr/Tyr-linked protein glycosylation between brain regions and sexes in mice. Brain N-glycans are less complex in sequence and variety compared to other tissues, consisting predominantly of high-mannose and fucosylated/bisected structures. Most brain O-glycans are unbranched, sialylated O-GalNAc and O-mannose structures. A consistent pattern is observed between regions, and sex differences are minimal compared to those in plasma. Brain glycans correlate with RNA expression of their synthetic enzymes, and analysis of glycosylation genes in humans show a global downregulation in the brain compared to other tissues. We hypothesize that this restricted repertoire of protein glycans arises from their tight regulation in the brain. These results provide a roadmap for future studies of glycosylation in neurodevelopment and disease.
Bojar D, Meche L, Meng G, Eng W, Smith DF, Cummings RD, Mahal LK. A Useful Guide to Lectin Binding: Machine-Learning Directed Annotation of 57 Unique Lectin Specificities. ACS Chem Biol. 2022.Abstract
Glycans are critical to every facet of biology and medicine, from viral infections to embryogenesis. Tools to study glycans are rapidly evolving; however, the majority of our knowledge is deeply dependent on binding by glycan binding proteins (e.g., lectins). The specificities of lectins, which are often naturally isolated proteins, have not been well-defined, making it difficult to leverage their full potential for glycan analysis. Herein, we use a combination of machine learning algorithms and expert annotation to define lectin specificity for this important probe set. Our analysis uses comprehensive glycan microarray analysis of commercially available lectins we obtained using version 5.0 of the Consortium for Functional Glycomics glycan microarray (CFGv5). This data set was made public in 2011. We report the creation of this data set and its use in large-scale evaluation of lectin-glycan binding behaviors. Our motif analysis was performed by integrating 68 manually defined glycan features with systematic probing of computational rules for significant binding motifs using mono- and disaccharides and linkages. Combining machine learning with manual annotation, we create a detailed interpretation of glycan-binding specificity for 57 unique lectins, categorized by their major binding motifs: mannose, complex-type N-glycan, O-glycan, fucose, sialic acid and sulfate, GlcNAc and chitin, Gal and LacNAc, and GalNAc. Our work provides fresh insights into the complex binding features of commercially available lectins in current use, providing a critical guide to these important reagents.