Publications by Year: 2017

2017
van Die I, Cummings RD. The Mannose Receptor in Regulation of Helminth-Mediated Host Immunity. Front Immunol. [Internet]. 2017;8 (1677). Publisher's VersionAbstract
Infection with parasitic helminths affects humanity and animal welfare. Parasitic helminths have the capacity to modulate host immune responses to promote their survival in infected hosts, often for a long time leading to chronic infections. In contrast to many infectious microbes, however, the helminths are able to induce immune responses that show positive bystander effects such as the protection to several immune disorders, including multiple sclerosis, inflammatory bowel disease, and allergies. They generally promote the generation of a tolerogenic immune microenvironment including the induction of type 2 (Th2) responses and a sub-population of alternatively activated macrophages. It is proposed that this anti-inflammatory response enables helminths to survive in their hosts and protects the host from excessive pathology arising from infection with these large pathogens. In any case, there is an urgent need to enhance understanding of how helminths beneficially modulate inflammatory reactions, to identify the molecules involved and to promote approaches to exploit this knowledge for future therapeutic interventions. Evidence is increasing that C-type lectins play an important role in driving helminth-mediated immune responses. C-type lectins belong to a large family of calcium-dependent receptors with broad glycan specificity. They are abundantly present on immune cells, such as dendritic cells and macrophages, which are essential in shaping host immune responses. Here, we will focus on the role of the C-type lectin macrophage mannose receptor (MR) in helminth-host interactions, which is a critically understudied area in the field of helminth immunobiology. We give an overview of the structural aspects of the MR including its glycan specificity, and the functional implications of the MR in helminth-host interactions focusing on a few selected helminth species.
Cummings RD. The Haystack Is Full of Needles: Technology Rescues Sugars!. Mol Cell. [Internet]. 2017;7 (68) :827-829. Publisher's VersionAbstract
The recent paper by Stadlmann et al. (2017) provides a novel algorithm for glycoproteomics in which complex glycopeptides can be identified in complex mixtures to aid in characterizing both the site of glycosylation and the glycan structure.
Clemente T, Vieira NJ, Cerliani JP, Adrain C, Luthi A, Dominguez MR, Yon M, Barrence FC, Riul TB, Cummings RD, et al. Proteomic and functional analysis identifies galectin-1 as a novel regulatory component of the cytotoxic granule machinery. Cell Death Dis [Internet]. 2017;8 (12). Publisher's VersionAbstract
Secretory granules released by cytotoxic T lymphocytes (CTLs) are powerful weapons against intracellular microbes and tumor cells. Despite significant progress, there is still limited information on the molecular mechanisms implicated in target-driven degranulation, effector cell survival and composition and structure of the lytic granules. Here, using a proteomic approach we identified a panel of putative cytotoxic granule proteins, including some already known granule constituents and novel proteins that contribute to regulate the CTL lytic machinery. Particularly, we identified galectin-1 (Gal1), an endogenous immune regulatory lectin, as an integral component of the secretory granule machinery and unveil the unexpected function of this lectin in regulating CTL killing activity. Mechanistic studies revealed the ability of Gal1 to control the non-secretory lytic pathway by influencing Fas-Fas ligand interactions. This study offers new insights on the composition of the cytotoxic granule machinery, highlighting the dynamic cross talk between secretory and non-secretory pathways in controlling CTL lytic function.
Hamilton BS, Wilson JD, Shumakovich MA, Fisher AC, Brooks JC, Pontes A, Naran R, Heiss C, Gao C, Kardish R, et al. A library of chemically defined human N-glycans synthesized from microbial oligosaccharide precursors. Sci Rep. [Internet]. 2017;7 (1). Publisher's VersionAbstract
Synthesis of homogenous glycans in quantitative yields represents a major bottleneck to the production of molecular tools for glycoscience, such as glycan microarrays, affinity resins, and reference standards. Here, we describe a combined biological/enzymatic synthesis that is capable of efficiently converting microbially-derived precursor oligosaccharides into structurally uniform human-type N-glycans. Unlike starting material obtained by chemical synthesis or direct isolation from natural sources, which can be time consuming and costly to generate, our approach involves precursors derived from renewable sources including wild-type Saccharomyces cerevisiae glycoproteins and lipid-linked oligosaccharides from glycoengineered Escherichia coli. Following deglycosylation of these biosynthetic precursors, the resulting microbial oligosaccharides are subjected to a greatly simplified purification scheme followed by structural remodeling using commercially available and recombinantly produced glycosyltransferases including key N-acetylglucosaminyltransferases (e.g., GnTI, GnTII, and GnTIV) involved in early remodeling of glycans in the mammalian glycosylation pathway. Using this approach, preparative quantities of hybrid and complex-type N-glycans including asymmetric multi-antennary structures were generated and subsequently used to develop a glycan microarray for high-throughput, fluorescence-based screening of glycan-binding proteins. Taken together, these results confirm our combined synthesis strategy as a new, user-friendly route for supplying chemically defined human glycans simply by combining biosynthetically-derived precursors with enzymatic remodeling.
Sardar MYR, Krishnamurthy VR, Park S, Mandhapati AR, Wever WJ, Park D, Cummings RD, Chaikof EL. Synthesis of LewisX-O-Core-1 threonine: A building block for O-linked LewisX glycopeptides. Carbohydrate Research [Internet]. 2017;452 (17) :47-53. Publisher's VersionAbstract
LewisX (LeX) is a branched trisaccharide Galβ1→4(Fucα1→3)GlcNAc that is expressed on many cell surface glycoproteins and plays critical roles in innate and adaptive immune responses. However, efficient synthesis of glycopeptides bearing LeX remains a major limitation for structure-function studies of the LeX determinant. Here we report a total synthesis of a LeX pentasaccharide 1 using a regioselective 1-benzenesulfinyl piperidine/triflic anhydride promoted [3 + 2] glycosylation. The presence of an Fmoc-threonine amino acid facilitates incorporation of the pentasaccharide in solid phase peptide synthesis, providing a route to diverse O-linked LeX glycopeptides. The described approach is broadly applicable to the synthesis of a variety of complex glycopeptides containing O-linked LeX or sialyl LewisX (sLeX).
Collins BC, Gunn RJ, McKitrick TR, Cummings RD, Cooper MD, Herrin BR, Wilson IA. Structural Insights into VLR Fine Specificity for Blood Group Carbohydrates. CellPress [Internet]. 2017;25 (11) :1667-1678. Publisher's VersionAbstract
High-quality reagents to study and detect glycans with high specificity for research and clinical applications are severely lacking. Here, we structurally and functionally characterize several variable lymphocyte receptor (VLR)-based antibodies from lampreys immunized with O erythrocytes that specifically recognize the blood group H-trisaccharide type II antigen. Glycan microarray analysis and biophysical data reveal that these VLRs exhibit greater specificity for H-trisaccharide compared with the plant lectin UEA-1, which is widely used in blood typing. Among these antibodies, O13 exhibits superior specificity for H-trisaccharide, the basis for which is revealed by comparative analysis of high-resolution VLR:glycan crystal structures. Using a structure-guided approach, we designed an O13 mutant with further enhanced specificity for H-trisaccharide. These insights into glycan recognition by VLRs suggest that lampreys can produce highly specific glycan antibodies, and are a valuable resource for the production of next-generation glycan reagents for biological and biomedical research and as diagnostics and therapeutics.
Cummings RD, Schnaar RL, Esko JD, Drickamer K, Taylor ME. Principles of Glycan Recognition. In: ; 2017. Publisher's VersionAbstract
Glycans interact with many types of proteins including enzymes, antibodies, and lectins. Protein recognition of glycans represents a major way in which the information contained in glycan structures is deciphered and promotes biological activities. This chapter describes approaches to study the kinetics and thermodynamics of interactions between glycans and glycan-binding proteins (GBPs).
Doering TL, Cummings RD, Aebi M. Fungi. In: Essentials of Glycobiology. 3rd edition. ; 2017. Publisher's VersionAbstract
Fungi are a fascinating group of predominantly multicellular organisms. Fungal species, such as Saccharomyces cerevisiae, have been instrumental in defining the fundamental processes of glycosylation, but their glycobiology is significantly different from animal or plant systems. This chapter describes the glycan structures that compose the fungal cell wall, offers some insights into novel glycobiology revealed through studying fungal systems, addresses the use of fungi as experimental and synthetic systems, and delineates the relationships of several important glycoconjugates to fungal biology and pathogenesis.
Cummings RD, van Die I. Parasitic Infections. In: Essentials of Glycobiology. 3rd edition. ; 2017. Publisher's VersionAbstract
Parasitic protozoans and helminths (worms) synthesize glycans with structures often different from those typically found in vertebrates and are typically antigenic. Parasites also express glycan-binding proteins (GBPs) involved in host invasion and parasitism. As part of the disease process, parasite glycans can trigger the host's innate immune system, which can lead to the induction of adaptive immune responses. This chapter discusses the major roles of glycoconjugates in parasitic infections.
Cummings RD, Liu F-T, Vasta GR. Galectins. In: Essentials of Glycobiology. 3rd edition. ; 2017. Publisher's VersionAbstract
Galectins are among the most widely expressed class of lectins in all organisms. They typically bind β-galactose-containing glycoconjugates and share primary structural homology in their carbohydrate-recognition domains (CRDs). Galectins have many biological functions, including roles in development, regulation of immune cell activities, and microbial recognition as part of the innate immune system. This chapter describes the diversity of the galectin family and presents an overview of what is known about their biosynthesis, secretion, and biological roles.
Stanley P, Cummings RD. Structures Common to Different Glycans. In: Essentials of Glycobiology. 3rd edition. ; 2017. Publisher's VersionAbstract
This chapter describes the variable components of N-glycans, O-glycans, and glycolipids attached to the core of each glycan class and presented in Chapters 9, 10, and 11. The glycan extensions of these cores form the mature glycan and may include human blood group determinants. The terminal sugars of the mature glycan often regulate the function(s) or recognition properties of a glycoconjugate. Also discussed are milk oligosaccharides, that carry many of the same extensions on a lactose core.
Cummings RD, McEver RP. C-Type Lectins. In: Essentials of Glycobiology. 3rd edition. ; 2017. Publisher's VersionAbstract
C-type lectins (CTLs) are Ca++-dependent glycan-binding proteins (GBPs) that share primary and secondary structural homology in their carbohydrate-recognition domains (CRDs). The CRD of CTLs is more generally defined as the CTL domain (CTLD), because not all proteins with this domain bind either glycans or Ca++. CTLs include collectins, selectins, endocytic receptors, and proteoglycans, some of which are secreted and others are transmembrane proteins. They often oligomerize, which increases their avidity for multivalent ligands. CTLs differ significantly in the types of glycans that they recognize with high affinity. These proteins function as adhesion and signaling receptors in many pathways, including homeostasis and innate immunity, and are crucial in inflammatory responses and leukocyte and platelet trafficking.
Cummings RD, Schnaar R. R-Type Lectins. In: Essentials of Glycobiology. 3rd edition. ; 2017. Publisher's VersionAbstract
The R-type lectins are members of a superfamily of proteins that contain a carbohydrate-recognition domain (CRD) that is structurally similar to the one in ricin. Ricin is considered the first lectin to be discovered, and it is thus the prototypical lectin in this category. R-type lectins are present in plants, animals, and bacteria, and the lectin domain in some cases is associated with a separate subunit that is a potent toxin. The structure–function relationships of this group of proteins are discussed in this chapter.
Seeberger PH, Cummings RD. Glycans in Biotechnology and the Pharmaceutical Industry. In: Essentials of Glycobiology. 3rd edition. ; 2017. Publisher's VersionAbstract
Several classes of successful commercial products are based on isolated or synthetic glycans. This chapter summarizes the use of glycans as vaccines and therapeutics. Applications of glycan mimics as drugs are also discussed.
Cummings RD, Darvill AG, Etzler ME, Hahn MG. Glycan-Recognizing Probes as Tools. In: ; 2017. Publisher's VersionAbstract
Antibodies, lectins, microbial adhesins, viral agglutinins, and other proteins with carbohydrate-binding modules, collectively termed glycan-recognizing probes (GRPs), are widely used in glycan analysis because their specificities enable them to discriminate among a diverse variety of glycan structures. The native multivalency of many of these molecules promotes high-affinity avidity binding to the glycans and cell surfaces containing those glycans. This chapter describes the variety of commonly used GRPs, the types of analyses to which they may be applied, and cautionary principles that affect their optimal use.
Wilson IBH, Cummings RD, Aebi M. Nematoda. In: Essentials of Glycobiology. 3rd edition. ; 2017. Publisher's VersionAbstract
This chapter focuses on the nematode (roundworm) Caenorhabditis elegans as an example of the phylum Nematoda. C. elegans provides a powerful genetic system for studying glycans during embryological development and in primitive organ systems.
Cummings RD, Etzler ME, Surolia A. L-Type Lectins. In: Essentials of Glycobiology. 3rd edition. ; 2017. Publisher's VersionAbstract
The L-type lectins occur in the seeds of leguminous plants, and they have structural motifs that are present in a variety of glycan-binding proteins (GBPs) from other eukaryotic organisms. The structures of many of these lectins have been characterized, and many L-type lectins are used in a wide range of biomedical and analytical procedures. This chapter discusses the structure–function relationships of these lectins and the various biological roles they have in different organisms.
Parodi A, Cummings RD, Aebi M. Glycans in Glycoprotein Quality Control. In: Essentials of Glycobiology. 3rd edition. ; 2017. Publisher's VersionAbstract
N-Glycans affect glycoprotein folding because of their hydrophilic nature. In the endoplasmic reticulum (ER), the processing of N-glycans yields a series of truncated N-glycans that serve as checkpoints that dictate the life or death of many newly made membrane and secreted proteins. Other glycan modifications also may affect glycoprotein folding in the ER. This chapter describes glycan-mediated quality-control processes in the ER and Golgi apparatus and what happens to glycoproteins that fail their “final folding examination.”
Brazil JC, Sumagin R, Stowell SR, Goo L, Louis NA, Cummings RD, Parkos CA. Expression of Lewis-a glycans on polymorphonuclear leukocytes augments function by increasing transmigration. J Leukoc Biol. [Internet]. 2017;102 (3) :753-762. Publisher's VersionAbstract
PMN-expressed fucosylated glycans from the Lewis glycan family, including Lewis-x (Lex) and sialyl Lewis-x (sLex), have previously been implicated in the regulation of important PMN functions, including selectin-mediated trafficking across vascular endothelium. Although glycans, such as Lex and sLex, which are based on the type 2 sequence (Galβ1-4GlcNAc-R), are abundant on PMNs, the presence of type 1 Galβ1-3GlcNAc-R glycans required for PMN expression of the closely related stereoisomer of Lex, termed Lewis-A (Lea), has not, to our knowledge, been reported. Here, we show that Lea is abundantly expressed by human PMNs and functionally regulates PMN migration. Using mAbs whose precise epitopes were determined using glycan array technology, Lea function was probed using Lea-selective mAbs and lectins, revealing increased PMN transmigration across model intestinal epithelia, which was independent of epithelial-expressed LeaAnalyses of glycan synthetic machinery in PMNs revealed expression of β1-3 galactosyltransferase and α1-4 fucosyltransferase, which are required for Lea synthesis. Specificity of functional effects observed after ligation of Lea was confirmed by failure of anti-Lea mAbs to enhance migration using PMNs from individuals deficient in α1-4 fucosylation. These results demonstrate that Lea is expressed on human PMNs, and its specific engagement enhances PMN migration responses. We propose that PMN Lea represents a new target for modulating inflammation and regulating intestinal, innate immunity.
Schneider C, Wicki S, Graeter S, Timcheva TM, Keller CW, Quast I, Leontyev D, Djoumerska-Alexieva IK, Kasermann F, Jakob SM, et al. IVIG regulates the survival of human but not mouse neutrophils. Sci Rep. [Internet]. 2017;7 :1296. Publisher's VersionAbstract
Intravenous immunoglobulin (IVIG) are purified IgG preparations made from the pooled plasma from thousands of healthy donors and are being tested in preclinical mouse models. Inherent challenges, however, are the pluripotency of IVIG and its xenogeneicity in animals. IVIG can alter the viability of human neutrophils via agonistic antibodies to Fas and Siglec-9. In this study, we compared the effects of IVIG on human and mouse neutrophils using different death assays. Different commercial IVIG preparations similarly induced cytokine-dependent death in human neutrophils, whereas they had no effects on the survival of either peripheral blood or bone marrow neutrophils from C57BL/6 or BALB/c mice. F(ab’)2 but not Fc fragments of IVIG induced death of human neutrophils, whereas neither of these IVIG fragments, nor agonistic monoclonal antibodies to human Fas or Siglec-9 affected the viability of mouse neutrophils. Pooled mouse IgG, which exhibited a different immunoprofile compared to IVIG, also had no effect on mouse cells. Together, these observations demonstrate that effects of IVIG on neutrophil survival are not adequately reflected in current mouse models, despite the key role of these cells in human inflammatory and autoimmune diseases.

Pages