Publications by Type: Journal Article

2017
Hanes MS, Moreman KW, Cummings RD. Biochemical characterization of functional domains of the chaperone Cosmc. PLoS One [Internet]. 2017;12 (6). Publisher's VersionAbstract
Cosmc is an endoplasmic reticulum chaperone necessary for normal protein O-GalNAc glycosylation through regulation of T-synthase, its single client. Loss-of-function of Cosmc results in expression of the Tn antigen, which is associated with multiple human diseases including cancer. Despite intense interest in dysregulated expression of the Tn antigen, little is known about the structure and function of Cosmc, including domain organization, secondary structure, oligomerization, and co-factors. Limited proteolysis experiments show that Cosmc contains a structured N-terminal domain (CosmcΔ256), and biochemical characterization of CosmcΔ256 reveals wild type chaperone activity. Interestingly, CosmcE152K, which shows loss of function in vivo, exhibits wild type-like activity in vitro. Cosmc and CosmcE152K heterogeneously oligomerize and form monomeric, dimeric, trimeric, and tetrameric species, while CosmcΔ256 is predominantly monomeric as characterized by chemical crosslinking and blue native page electrophoresis. Additionally, Cosmc selectively binds divalent cations in thermal shift assays and metal binding is abrogated by the CosmcΔ256 truncation, and perturbed by the E152K mutation. Therefore, the N-terminal domain of Cosmc mediates T-synthase binding and chaperone function, whereas the C-terminal domain is necessary for oligomerization and metal binding. Our results provide new structure-function insight to Cosmc, indicate that Cosmc behaves as a modular protein and suggests points of modulation or regulation of in vivo chaperone function.
Tiemeyer M, Aoki K, Paulson J, Cummings RD, York WS, Karlsson NG, Lisacek F, Packer NH, Campbell MP, Aoki NP, et al. GlyTouCan: an accessible glycan structure repository. Glycobiology [Internet]. 2017;27 (10) :915-919. Publisher's VersionAbstract
Rapid and continued growth in the generation of glycomic data has revealed the need for enhanced development of basic infrastructure for presenting and interpreting these datasets in a manner that engages the broader biomedical research community. Early in their growth, the genomic and proteomic fields implemented mechanisms for assigning unique gene and protein identifiers that were essential for organizing data presentation and for enhancing bioinformatic approaches to extracting knowledge. Similar unique identifiers are currently absent from glycomic data. In order to facilitate continued growth and expanded accessibility of glycomic data, the authors strongly encourage the glycomics community to coordinate the submission of their glycan structures to the GlyTouCan Repository and to make use of GlyTouCan identifiers in their communications and publications. The authors also deeply encourage journals to recommend a submission workflow in which submitted publications utilize GlyTouCan identifiers as a standard reference for explicitly describing glycan structures cited in manuscripts.
Zhong AH, Gordon Jiang Z, Cummings RD, Robson SC. Various N-glycoforms differentially upregulate E-NTPDase activity of the NTPDase3/CD39L3 ecto-enzymatic domain. Purinergic Signal. [Internet]. 2017;Sep 27 :1-9. Publisher's VersionAbstract
The GDA1/CD39 ecto-nucleoside triphosphate diphosphosphohydrolase (E-NTPDase) superfamily is a group of eight heavily glycosylated ecto-enzymes that hydrolyze extracellular nucleosides di- and tri-phosphates in the presence of divalent cations, to generate the monophosphate derivatives. This catalytic process differentially regulates a complex array of purinergic signaling responses. NTPDase3/CD39L3is dominantly expressed in pancreatic islet cells, where it may regulate insulin secretion, and has seven N-linked glycosylation sites with four close to five highly conserved domains called “apyrase conserved regions” (ACRs). In a manner similar to CD39, NTPDase3/CD39L3 uses ATP as its preferential substrate and also possesses significant activities toward other triphosphate and diphosphate nucleosides. To understand the mechanism of the ecto-NTPDase activity and substrate specificity, potentially impacted by N-glycans, we have generated soluble enzymatic domains of NTPDase3/CD39L3 in human embryotic kidney cells with four different glycan modifications. These include mannose5–9 glycans with kifunesine treatment, single GlcNAc-Asn by treatment with EndoH, de-glycosylated form by treatment with PNGaseF, and wild-type glycans. Our functional data indicate that the non-glycosylated NTPDase3/CD39L3 ecto-enzymatic domain retains activity, but that N-glycan attachments, such as the GlcNAc-Asn, substantially upregulate specific NTPDase activity by 2–20 fold. Both the Vmax and the Km on di- or tri-phosphate nucleosides are substantially and differentially altered by the glycan attachments. Structural modeling analysis based on putative structures derived from bacterial-originated CD39 domain proteins suggests that N-glycan modifications at Asn149 next to ACR2 and/or Asn454, N-terminal to ACR5 have critical roles in regulating the catalytic pocket of NTPDase3/CD39L3. Our data provide both new insights into the enzymatic mechanisms of NTPDase family members and further evidence that N-glycans directly modulate functional ectonucleotidase activities.
Byrd-Leotis L, Cummings RD, Steinhauer DA. The Interplay between the Host Receptor and Influenza Virus Hemagglutinin and Neuraminidase. Int J Mol Sci. [Internet]. 2017;18 (1541). Publisher's VersionAbstract
The hemagglutinin (HA) and neuraminidase (NA) glycoproteins of influenza A virus are responsible for the surface interactions of the virion with the host. Entry of the virus is mediated by functions of the HA: binding to cellular receptors and facilitating fusion of the virion membrane with the endosomal membrane. The HA structure contains receptor binding sites in the globular membrane distal head domains of the trimer, and the fusion machinery resides in the stem region. These sites have specific characteristics associated with subtype and host, and the differences often define species barriers. For example, avian viruses preferentially recognize α2,3-Sialic acid terminating glycans as receptors and mammalian viruses recognize α2,6-Sialic acid. The neuraminidase, or the receptor-destroying protein, cleaves the sialic acid from cellular membrane constituents and viral glycoproteins allowing for egress of nascent virions. A functional balance of activity has been demonstrated between the two glycoproteins, resulting in an optimum level of HA affinity and NA enzymatic cleavage to allow for productive infection. As more is understood about both HA and NA, the relevance for functional balance between HA and NA continues to expand, with potential implications for interspecies transmission, host adaptation, and pathogenicity.
Taniguchi T, Woodward AM, Magnelli P, McColgan NM, Lehoux S, Jacobo SMP, Mauris J, Argüeso P. N-Glycosylation affects the stability and barrier function of the MUC16 mucin. J Biol Chem. [Internet]. 2017;292 (June 30) :11079-11090. Publisher's VersionAbstract
Transmembrane mucins are highly O-glycosylated glycoproteins that coat the apical glycocalyx on mucosal surfaces and represent the first line of cellular defense against infection and injury. Relatively low levels of N-glycans are found on transmembrane mucins, and their structure and function remain poorly characterized. We previously reported that carbohydrate-dependent interactions of transmembrane mucins with galectin-3 contribute to maintenance of the epithelial barrier at the ocular surface. Now, using MALDI-TOF mass spectrometry, we report that transmembrane mucin N-glycans in differentiated human corneal epithelial cells contain primarily complex-type structures with N-acetyllactosamine, a preferred galectin ligand. In N-glycosylation inhibition experiments, we find that treatment with tunicamycin and siRNA-mediated knockdown of the Golgi N-acetylglucosaminyltransferase I gene (MGAT1) induce partial loss of both total and cell-surface levels of the largest mucin, MUC16, and a concomitant reduction in glycocalyx barrier function. Moreover, we identified a distinct role for N-glycans in promoting MUC16's binding affinity toward galectin-3 and in causing retention of the lectin on the epithelial cell surface. Taken together, these studies define a role for N-linked oligosaccharides in supporting the stability and function of transmembrane mucins on mucosal surfaces.
2016
Kudelka MR, Hinrichs BH, Darby T, Moreno CS, Nishio H, Cutler CE, Wang J, Wu H, Zeng J, Wang Y, et al. Cosmc is an X-linked inflammatory bowel disease risk gene that spatially regulates gut microbiota and contributes to sex-specific risk. Proc Natl Acad Sci U S A. 2016;113 (51) :14787-14792.Abstract
Inflammatory bowel disease (IBD) results from aberrant immune stimulation against a dysbiotic mucosal but relatively preserved luminal microbiota and preferentially affects males in early onset disease. However, factors contributing to sex-specific risk and the pattern of dysbiosis are largely unexplored. Core 1 β3GalT-specific molecular chaperone (Cosmc), which encodes an X-linked chaperone important for glycocalyx formation, was recently identified as an IBD risk factor by genome-wide association study. We deleted Cosmc in mouse intestinal epithelial cells (IECs) and found marked reduction of microbiota diversity in progression from the proximal to the distal gut mucosa, but not in the overlying lumen, as seen in IBD. This loss of diversity coincided with local emergence of a proinflammatory pathobiont and distal gut restricted pathology. Mechanistically, we found that Cosmc regulates host genes, bacterial ligands, and nutrient availability to control microbiota biogeography. Loss of one Cosmc allele in males (IEC-Cosmc(-/y)) resulted in a compromised mucus layer, spontaneous microbe-dependent inflammation, and enhanced experimental colitis; however, females with loss of one allele and mosaic deletion of Cosmc in 50% of crypts (IEC-Cosmc(+/-)) were protected from spontaneous inflammation and partially protected from experimental colitis, likely due to lateral migration of normal mucin glycocalyx from WT cells over KO crypts. These studies functionally validate Cosmc as an IBD risk factor and implicate it in regulating the spatial pattern of dysbiosis and sex bias in IBD.
Agravat SB, Song X, Rojsajjakul T, Cummings RD, Smith DF. Computational approaches to define a human milk metaglycome. Bioinformatics. 2016;32 (10) :1471-8.Abstract
MOTIVATION: The goal of deciphering the human glycome has been hindered by the lack of high-throughput sequencing methods for glycans. Although mass spectrometry (MS) is a key technology in glycan sequencing, MS alone provides limited information about the identification of monosaccharide constituents, their anomericity and their linkages. These features of individual, purified glycans can be partly identified using well-defined glycan-binding proteins, such as lectins and antibodies that recognize specific determinants within glycan structures. RESULTS: We present a novel computational approach to automate the sequencing of glycans using metadata-assisted glycan sequencing, which combines MS analyses with glycan structural information from glycan microarray technology. Success in this approach was aided by the generation of a 'virtual glycome' to represent all potential glycan structures that might exist within a metaglycomes based on a set of biosynthetic assumptions using known structural information. We exploited this approach to deduce the structures of soluble glycans within the human milk glycome by matching predicted structures based on experimental data against the virtual glycome. This represents the first meta-glycome to be defined using this method and we provide a publically available web-based application to aid in sequencing milk glycans. AVAILABILITY AND IMPLEMENTATION: http://glycomeseq.emory.edu CONTACT: sagravat@bidmc.harvard.edu SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
Noll AJ, Yu Y, Lasanajak Y, Duska-McEwen G, Buck RH, Smith DF, Cummings RD. Human DC-SIGN binds specific human milk glycans. Biochem J. 2016;473 (10) :1343-53.Abstract
Human milk glycans (HMGs) are prebiotics, pathogen receptor decoys and regulators of host physiology and immune responses. Mechanistically, human lectins (glycan-binding proteins, hGBP) expressed by dendritic cells (DCs) are of major interest, as these cells directly contact HMGs. To explore such interactions, we screened many C-type lectins and sialic acid-binding immunoglobulin-like lectins (Siglecs) expressed by DCs for glycan binding on microarrays presenting over 200 HMGs. Unexpectedly, DC-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN) showed robust binding to many HMGs, whereas other C-type lectins failed to bind, and Siglec-5 and Siglec-9 showed weak binding to a few glycans. By contrast, most hGBP bound to multiple glycans on other microarrays lacking HMGs. An α-linked fucose residue was characteristic of HMGs bound by DC-SIGN. Binding of DC-SIGN to the simple HMGs 2'-fucosyl-lactose (2'-FL) and 3-fucosyl-lactose (3-FL) was confirmed by flow cytometry to beads conjugated with 2'-FL or 3-FL, as well as the ability of the free glycans to inhibit DC-SIGN binding. 2'-FL had an IC50 of ∼1 mM for DC-SIGN, which is within the physiological concentration of 2'-FL in human milk. These results demonstrate that DC-SIGN among the many hGBP expressed by DCs binds to α-fucosylated HMGs, and suggest that such interactions may be important in influencing immune responses in the developing infant.
Mickum ML, Prasanphanich NS, Song X, Dorabawila N, Mandalasi M, Lasanajak Y, Luyai A, Secor EW, Wilkins PP, van Die I, et al. Identification of Antigenic Glycans from Schistosoma mansoni by Using a Shotgun Egg Glycan Microarray. Infect Immun. 2016;84 (5) :1371-86.Abstract
Infection of mammals by the parasitic helminth Schistosoma mansoni induces antibodies to glycan antigens in worms and eggs, but the differential nature of the immune response among infected mammals is poorly understood. To better define these responses, we used a shotgun glycomics approach in which N-glycans from schistosome egg glycoproteins were prepared, derivatized, separated, and used to generate an egg shotgun glycan microarray. This array was interrogated with sera from infected mice, rhesus monkeys, and humans and with glycan-binding proteins and antibodies to gather information about the structures of antigenic glycans, which also were analyzed by mass spectrometry. A major glycan antigen targeted by IgG from different infected species is the FLDNF epitope [Fucα3GalNAcβ4(Fucα3)GlcNAc-R], which is also recognized by the IgG monoclonal antibody F2D2. The FLDNF antigen is expressed by all life stages of the parasite in mammalian hosts, and F2D2 can kill schistosomula in vitro in a complement-dependent manner. Different antisera also recognized other glycan determinants, including core β-xylose and highly fucosylated glycans. Thus, the natural shotgun glycan microarray of schistosome eggs is useful in identifying antigenic glycans and in developing new anti-glycan reagents that may have diagnostic applications and contribute to developing new vaccines against schistosomiasis.
Ghasemi F, Hosseini ES, Song X, Gottfried DS, Chamanzar M, Raeiszadeh M, Cummings RD, Eftekhar AA, Adibi A. Multiplexed detection of lectins using integrated glycan-coated microring resonators. Biosens Bioelectron. 2016;80 :682-90.Abstract
We present the systematic design, fabrication, and characterization of a multiplexed label-free lab-on-a-chip biosensor using silicon nitride (SiN) microring resonators. Sensor design is addressed through a systematic approach that enables optimizing the sensor according to the specific noise characteristics of the setup. We find that an optimal 6 dB undercoupled resonator consumes 40% less power in our platform to achieve the same limit-of-detection as the conventional designs using critically coupled resonators that have the maximum light-matter interaction. We lay out an optimization framework that enables the generalization of our method for any type of optical resonator and noise characteristics. The device is fabricated using a CMOS-compatible process, and an efficient swabbing lift-off technique is introduced for the deposition of the protective oxide layer. This technique increases the lift-off quality and yield compared to common lift-off methods based on agitation. The complete sensor system, including microfluidic flow cell and surface functionalization with glycan receptors, is tested for the multiplexed detection of Aleuria Aurantia Lectin (AAL) and Sambucus Nigra Lectin (SNA). Further analysis shows that the sensor limit of detection is 2 × 10(-6) RIU for bulk refractive index, 1 pg/mm(2) for surface-adsorbed mass, and ∼ 10 pM for the glycan/lectins studied here.
Song X, Ju H, Lasanajak Y, Kudelka MR, Smith DF, Cummings RD. Oxidative release of natural glycans for functional glycomics. Nat Methods. 2016;13 (6) :528-34.Abstract
Glycans have essential roles in biology and the etiology of many diseases. A major hurdle in studying glycans through functional glycomics is the lack of methods to release glycans from diverse types of biological samples. Here we describe an oxidative strategy using household bleach to release all types of free reducing N-glycans and O-glycan-acids from glycoproteins, and glycan nitriles from glycosphingolipids. Released glycans are directly useful in glycomic analyses and can be derivatized fluorescently for functional glycomics. This chemical method overcomes the limitations in glycan generation and promotes archiving and characterization of human and animal glycomes and their functions.
Agre P, Bertozzi C, Bissell M, Campbell KP, Cummings RD, Desai UR, Estes M, Flotte T, Fogleman G, Gage F, et al. Training the next generation of biomedical investigators in glycosciences. J Clin Invest. 2016;126 (2) :405-8.Abstract
This position statement originated from a working group meeting convened on April 15, 2015, by the NHLBI and incorporates follow-up contributions by the participants as well as other thought leaders subsequently consulted, who together represent research fields relevant to all branches of the NIH. The group was deliberately composed not only of individuals with a current research emphasis in the glycosciences, but also of many experts from other fields, who evinced a strong interest in being involved in the discussions. The original goal was to discuss the value of creating centers of excellence for training the next generation of biomedical investigators in the glycosciences. A broader theme that emerged was the urgent need to bring the glycosciences back into the mainstream of biology by integrating relevant education into the curricula of medical, graduate, and postgraduate training programs, thus generating a critical sustainable workforce that can advance the much-needed translation of glycosciences into a more complete understanding of biology and the enhanced practice of medicine.
Hoeksema MA, Laan LC, Postma JJ, Cummings RD, de Winther MPJ, Dijkstra CD, van Die I, Kooij G. Treatment with Trichuris suis soluble products during monocyte-to-macrophage differentiation reduces inflammatory responses through epigenetic remodeling. FASEB J. 2016;30 (8) :2826-36.Abstract
Helminths have strong immunoregulatory properties that may be exploited in treatment of chronic immune disorders, such as multiple sclerosis and inflammatory bowel disease. Essential players in the pathogenesis of these diseases are proinflammatory macrophages. We present evidence that helminths modulate the function and phenotype of these innate immune cells. We found that soluble products derived from the Trichuris suis (TsSP) significantly affect the differentiation of monocytes into macrophages and their subsequent polarization. TsSPs reduce the expression and production of inflammatory cytokines, including IL-6 and TNF, in human proinflammatory M1 macrophages. TsSPs induce a concomitant anti-inflammatory M2 signature, with increased IL-10 production. Furthermore, they suppress CHIT activity and enhance secretion of matrix metalloproteinase 9. Short-term triggering of monocytes with TsSPs early during monocyte-to-macrophage differentiation imprinted these phenotypic alterations, suggesting long-lasting epigenetic changes. The TsSP-induced effects in M1 macrophages were completely reversed by inhibiting histone deacetylases, which corresponded with decreased histone acetylation at the TNF and IL6 promoters. These results demonstrate that TsSPs have a potent and sustained immunomodulatory effect on human macrophage differentiation and polarization through epigenetic remodeling and provide new insights into the mechanisms by which helminths modulate human immune responses.-Hoeksema, M. A., Laan, L. C., Postma, J. J., Cummings, R. D., de Winther, M. P. J., Dijkstra, C. D., van Die, I., Kooij, G. Treatment with Trichuris suis soluble products during monocyte-to-macrophage differentiation reduces inflammatory responses through epigenetic remodeling.
Kudelka MR, Antonopoulos A, Wang Y, Duong DM, Song X, Seyfried NT, Dell A, Haslam SM, Cummings RD, Ju T. Cellular O-Glycome Reporter/Amplification to explore O-glycans of living cells. Nat Methods. 2016;13 (1) :81-6.Abstract
Protein O-glycosylation has key roles in many biological processes, but the repertoire of O-glycans synthesized by cells is difficult to determine. Here we describe an approach termed Cellular O-Glycome Reporter/Amplification (CORA), a sensitive method used to amplify and profile mucin-type O-glycans synthesized by living cells. Cells convert added peracetylated benzyl-α-N-acetylgalactosamine to a large variety of modified O-glycan derivatives that are secreted from cells, allowing for easy purification for analysis by HPLC and mass spectrometry (MS). Relative to conventional O-glycan analyses, CORA resulted in an ∼100-1,000-fold increase in sensitivity and identified a more complex repertoire of O-glycans in more than a dozen cell types from Homo sapiens and Mus musculus. Furthermore, when coupled with computational modeling, CORA can be used for predictions about the diversity of the human O-glycome and offers new opportunities to identify novel glycan biomarkers for human diseases.
Noll AJ, Gourdine J-P, Yu Y, Lasanajak Y, Smith DF, Cummings RD. Galectins are human milk glycan receptors. Glycobiology. 2016;26 (6) :655-69.Abstract
The biological recognition of human milk glycans (HMGs) is poorly understood. Because HMGs are rich in galactose we explored whether they might interact with human galectins, which bind galactose-containing glycans and are highly expressed in epithelial cells and other cell types. We screened a number of human galectins for their binding to HMGs on a shotgun glycan microarray consisting of 247 HMGs derived from human milk, as well as to a defined HMG microarray. Recombinant human galectins (hGal)-1, -3, -4, -7, -8 and -9 bound selectively to glycans, with each galectin recognizing a relatively unique binding motif; by contrast hGal-2 did not recognize HMGs, but did bind to the human blood group A Type 2 determinants on other microarrays. Unlike other galectins, hGal-7 preferentially bound to glycans expressing a terminal Type 1 (Galβ1-3GlcNAc) sequence, a motif that had eluded detection on non-HMG glycan microarrays. Interactions with HMGs were confirmed in a solution setting by isothermal titration microcalorimetry and hapten inhibition experiments. These results demonstrate that galectins selectively bind to HMGs and suggest the possibility that galectin-HMG interactions may play a role in infant immunity.
Aoki-Kinoshita K, Agravat S, Aoki NP, Arpinar S, Cummings RD, Fujita A, Fujita N, Hart GM, Haslam SM, Kawasaki T, et al. GlyTouCan 1.0--The international glycan structure repository. Nucleic Acids Res. 2016;44 (D1) :D1237-42.Abstract
Glycans are known as the third major class of biopolymers, next to DNA and proteins. They cover the surfaces of many cells, serving as the 'face' of cells, whereby other biomolecules and viruses interact. The structure of glycans, however, differs greatly from DNA and proteins in that they are branched, as opposed to linear sequences of amino acids or nucleotides. Therefore, the storage of glycan information in databases, let alone their curation, has been a difficult problem. This has caused many duplicated efforts when integration is attempted between different databases, making an international repository for glycan structures, where unique accession numbers are assigned to every identified glycan structure, necessary. As such, an international team of developers and glycobiologists have collaborated to develop this repository, called GlyTouCan and is available at http://glytoucan.org/, to provide a centralized resource for depositing glycan structures, compositions and topologies, and to retrieve accession numbers for each of these registered entries. This will thus enable researchers to reference glycan structures simply by accession number, as opposed to by chemical structure, which has been a burden to integrate glycomics databases in the past.
Zhang W, James PM, Ng BG, Li X, Xia B, Rong J, Asif G, Raymond K, Jones MA, Hegde M, et al. A Novel N-Tetrasaccharide in Patients with Congenital Disorders of Glycosylation, Including Asparagine-Linked Glycosylation Protein 1, Phosphomannomutase 2, and Mannose Phosphate Isomerase Deficiencies. Clin Chem. 2016;62 (1) :208-17.Abstract
BACKGROUND: Primary deficiencies in mannosylation of N-glycans are seen in a majority of patients with congenital disorders of glycosylation (CDG). We report the discovery of a series of novel N-glycans in sera, plasma, and cultured skin fibroblasts from patients with CDG having deficient mannosylation. METHOD: We used LC-MS/MS and MALDI-TOF-MS analysis to identify and quantify a novel N-linked tetrasaccharide linked to the protein core, an N-tetrasaccharide (Neu5Acα2,6Galβ1,4-GlcNAcβ1,4GlcNAc) in plasma, serum glycoproteins, and a fibroblast lysate from patients with CDG caused by ALG1 [ALG1 (asparagine-linked glycosylation protein 1), chitobiosyldiphosphodolichol β-mannosyltransferase], PMM2 (phosphomannomutase 2), and MPI (mannose phosphate isomerase). RESULTS: Glycoproteins in sera, plasma, or cell lysate from ALG1-CDG, PMM2-CDG, and MPI-CDG patients had substantially more N-tetrasaccharide than unaffected controls. We observed a >80% decline in relative concentrations of the N-tetrasaccharide in MPI-CDG plasma after mannose therapy in 1 patient and in ALG1-CDG fibroblasts in vitro supplemented with mannose. CONCLUSIONS: This novel N-tetrasaccharide could serve as a diagnostic marker of ALG1-, PMM2-, or MPI-CDG for screening of these 3 common CDG subtypes that comprise >70% of CDG type I patients. Its quantification by LC-MS/MS may be useful for monitoring therapeutic efficacy of mannose. The discovery of these small N-glycans also indicates the presence of an alternative pathway in N-glycosylation not recognized previously, but its biological significance remains to be studied.
Mickum ML, Rojsajjakul T, Yu Y, Cummings RD. Schistosoma mansoni α1,3-fucosyltransferase-F generates the Lewis X antigen. Glycobiology. 2016;26 (3) :270-85.Abstract
Genetic evidence suggests that the Schistosoma mansoni genome contains six genes that encode α1,3-fucosyltransferases (smFuTs). To date, the activities and specificities of these putative fucosyltransferases are unknown. As Schistosoma express a variety of fucosylated glycans, including the Lewis X antigen Galβ1-4(Fucα1-3)GlcNAcβ-R, it is likely that this family of genes encode enzymes that are partly responsible for the generation of those structures. Here, we report the molecular cloning of fucosyltransferase-F (smFuT-F) from S. mansoni, as a soluble, green fluorescent protein fusion protein and its acceptor specificity. The gene smFuT-F was expressed in HEK freestyle cells, purified by affinity chromatography, and analyzed toward a broad panel of glycan acceptors. The enzyme product of smFuT-F effectively utilizes a type II chain acceptor Galβ1-4GlcNAc-R, but notably not the LDN sequence GalNAcβ1-4GlcNAc-R, to generate Lewis X type-glycans, and smFuT-F transcripts are present in all intramammalian life stages.
Blackler RJ, Evans DW, Smith DF, Cummings RD, Brooks CL, Braulke T, Liu X, Evans SV, Müller-Loennies S. Single-chain antibody-fragment M6P-1 possesses a mannose 6-phosphate monosaccharide-specific binding pocket that distinguishes N-glycan phosphorylation in a branch-specific manner†. Glycobiology. 2016;26 (2) :181-92.Abstract
The acquisition of mannose 6-phosphate (Man6P) on N-linked glycans of lysosomal enzymes is a structural requirement for their transport from the Golgi apparatus to lysosomes mediated by the mannose 6-phosphate receptors, 300 kDa cation-independent mannose 6-phosphate receptor (MPR300) and 46 kDa cation-dependent mannose 6-phosphate receptor (MPR46). Here we report that the single-chain variable domain (scFv) M6P-1 is a unique antibody fragment with specificity for Man6P monosaccharide that, through an array-screening approach against a number of phosphorylated N-glycans, is shown to bind mono- and diphosphorylated Man6 and Man7 glycans that contain terminal αMan6P(1 → 2)αMan(1 → 3)αMan. In contrast to MPR300, scFv M6P-1 does not bind phosphodiesters, monophosphorylated Man8 or mono- or diphosphorylated Man9 structures. Single crystal X-ray diffraction analysis to 2.7 Å resolution of Fv M6P-1 in complex with Man6P reveals that specificity and affinity is achieved via multiple hydrogen bonds to the mannose ring and two salt bridges to the phosphate moiety. In common with both MPRs, loss of binding was observed for scFv M6P-1 at pH values below the second pKa of Man6P (pKa = 6.1). The structures of Fv M6P-1 and the MPRs suggest that the change of the ionization state of Man6P is the main driving force for the loss of binding at acidic lysosomal pH (e.g. lysosome pH ∼ 4.6), which provides justification for the evolution of a lysosomal enzyme transport pathway based on Man6P recognition.
Brazil JC, Sumagin R, Cummings RD, Louis NA, Parkos CA. Targeting of Neutrophil Lewis X Blocks Transepithelial Migration and Increases Phagocytosis and Degranulation. Am J Pathol. 2016;186 (2) :297-311.Abstract
Polymorphonuclear leukocytes (PMNs) are innate immune cells whose principal function is to migrate from the blood to sites of inflammation, where they exert crucial anti-infectious and immunomodulatory effects. However, dysregulated migration of PMNs into mucosal epithelial tissues is characteristic of chronic inflammatory disorders, including inflammatory bowel disease. Carbohydrate-mediated binding interactions between PMN Lewis glycans and endothelial glycan-binding proteins are critical for initial migration of PMN out of the vasculature. However, the role of Lewis glycans during transepithelial migration (TEM) has not been well characterized. Herein, we show that antibody blockade of Lewis X (Le(x)) displayed as terminal glycan residues on the PMN surface blocks chemotaxis and TEM while enhancing PMN-adhesive interactions with intestinal epithelia. Unexpectedly, targeting of subterminal Le(x) residues within glycan chains had no effect on PMN migration or adhesive interactions. There was increased surface expression of Le(x) on PMN after TEM, and blockade of terminal Le(x) regulated post-migratory PMN functions, increasing PMN phagocytosis and the surface mobilization of azurophilic (CD63, myeloperoxidase, and neutrophil elastase) and specific (CD66b and lactoferrin) granule markers. These findings suggest that terminal Le(x) represents a potential target for regulating PMN trafficking and function in inflamed mucosa. Furthermore, given its abundant expression on migrating PMN, Le(x) may be a rational target for modulating inflammation in diseases where dysregulated PMN influx is associated with host tissue damage.

Pages