Recognition of microbial glycans by human intelectin-1.

Citation:

Wesener DA, Wangkanont K, McBride R, Song X, Kraft MB, Hodges HL, Zarling LC, Splain RA, Smith DF, Cummings RD, et al. Recognition of microbial glycans by human intelectin-1. Nat Struct Mol Biol. 2015;22 (8) :603-10.

Date Published:

2015 Aug

Abstract:

The glycans displayed on mammalian cells can differ markedly from those on microbes. Such differences could, in principle, be 'read' by carbohydrate-binding proteins, or lectins. We used glycan microarrays to show that human intelectin-1 (hIntL-1) does not bind known human glycan epitopes but does interact with multiple glycan epitopes found exclusively on microbes: β-linked D-galactofuranose (β-Galf), D-phosphoglycerol-modified glycans, heptoses, D-glycero-D-talo-oct-2-ulosonic acid (KO) and 3-deoxy-D-manno-oct-2-ulosonic acid (KDO). The 1.6-Å-resolution crystal structure of hIntL-1 complexed with β-Galf revealed that hIntL-1 uses a bound calcium ion to coordinate terminal exocyclic 1,2-diols. N-acetylneuraminic acid (Neu5Ac), a sialic acid widespread in human glycans, has an exocyclic 1,2-diol but does not bind hIntL-1, probably owing to unfavorable steric and electronic effects. hIntL-1 marks only Streptococcus pneumoniae serotypes that display surface glycans with terminal 1,2-diol groups. This ligand selectivity suggests that hIntL-1 functions in microbial surveillance.
Last updated on 09/22/2016