The Cosmc connection to the Tn antigen in cancer.

Citation:

Ju T, Aryal RP, Kudelka MR, Wang Y, Cummings RD. The Cosmc connection to the Tn antigen in cancer. Cancer Biomark. 2014;14 (1) :63-81.

Date Published:

2014 Jan 1

Abstract:

The Tn antigen is a tumor-associated carbohydrate antigen that is not normally expressed in peripheral tissues or blood cells. Expression of this antigen, which is found in a majority of human carcinomas of all types, arises from a blockage in the normal O-glycosylation pathway in which glycans are extended from the common precursor GalNAcα1-O-Ser/Thr (Tn antigen). This precursor is generated in the Golgi apparatus on newly synthesized glycoproteins by a family of polypeptide α-N-acetylgalactosaminyltransferases (ppGalNAcTs) and then extended to the common core 1 O-glycan Galβ1-3GalNAcα1-O-Ser/Thr (T antigen) by a single enzyme termed the T-synthase (core 1 β3-galactosyltransferase or C1GalT). Formation of the active form of the T-synthase requires a unique molecular chaperone termed Cosmc, encoded by Cosmc on the X-chromosome (Xq24 in humans, Xc3 in mice). Cosmc resides in the endoplasmic reticulum (ER) and prevents misfolding, aggregation, and proteasome-dependent degradation of newly synthesized T-synthase. Loss of expression of active T-synthase or Cosmc can lead to expression of the Tn antigen, along with its sialylated version Sialyl Tn antigen as observed in several cancers. Both genetic and epigenetic pathways, in addition to potential metabolic regulation, can result in abnormal expression of the Tn antigen. Engineered expression of the Tn antigen by disruption of either C1GalT (T-syn) or Cosmc in mice is associated with a tremendous range of pathologies and engineered expression of the Tn antigen in mouse embryos leads to embryonic death. Studies indicate that many membrane glycoproteins expressing the Tn antigen and/or truncated O-glycans may be dysfunctional, due to degradation and/or misfolding. Thus, expression of normal O-glycans is associated with health and homeostasis whereas truncation of O-glycans, e.g. the Tn and/or Sialyl Tn antigens is associated with cancer and other pathologies.